
Водяные пары

А.ШЕРОНОВ

П АРЫ ВОДЫ ВСТРЕЧАЮТСЯ В ОСНОВНОМ В ЗАДАЧАХ двух типов.

В одних задачах пар, наряду с другими идеальными газами, является участником различных газовых процессов. Уравнение состояния идеального газа, в том числе и смеси различных газов, имеет вид p=nkT, где p — давление, T — температура, k — постоянная Больцмана, а n — суммарная концентрация частиц (атомов или молекул). В этом уравнении индивидуальные свойства газов, такие как масса молекул или атомов, их размер и т.д., отсутствуют. Парциальное давление водяного пара p_{Π} в смеси газов определяется той же формулой: $p_{\Pi} = n_{\Pi}kT$, где n_{Π} — концентрация молекул пара.

Но, в отличие от других газов, пары обладают и определенной особенностью, которая отчетливо проявляется, если рассмотреть процесс изотермического изменения объема данной массы пара, содержащегося в некотором объеме.

Уменьшая объем, занимаемый паром, мы обнаружим, что при определенной (для данной температуры T_0) концентрации $n_{\rm int}$, соответствующей состоянию 2 на диаграмме p-V (см. рисунок), дальнейшего роста концентрации и, следовательно, роста парциального давления пара не происходит — пар становится насыщенным. Взаимодействие молекул пара

в этом состоянии настолько значительно, что дальнейшее уменьшение объема приводит к их слипанию – пар начинает превращаться в жидкость или, как говорят, конденсируется. Эта конденсация происходит при постоянной температуре, а значит, и при постоянном давлении, которое у насыщенного пара зависит только от температуры. Отметим, что если при уменьшении объема от V_2 до V_3 (см. диаграмму) сконденсировалась масса пара $m_{_{\rm II}}$, из которой образовалась жидкость той же массы, то справедливо равенство

$$p_{\scriptscriptstyle \Pi H} \big(V_2 - V_3 \big) = \frac{m_{\scriptscriptstyle \Pi}}{M} \, R T_0 \,, \label{eq:pnh}$$

где M- молярная масса пара. Это равенство в дальнейшем мы будем неоднократно использовать.

Напомним также, что давление насыщенного пара чрезвычайно сильно зависит от его температуры. Так, при 0 °С ($T=273~\rm K$) это давление составляет 4 мм рт.ст., при температуре 20 °С (293 K) оно уже в 5 раз больше, т.е. составляет 20 мм рт.ст., а при 100 °С (373 K) оно достигает 760 мм рт.ст. (1 атм). Таким образом, при изменении температуры от 273 K до 373 K давление насыщенного пара увеличивается в 190 раз. В задачах, связанных с насыщенным паром, его давление при 100 °С обычно считается известным, равным 1 атм, или 760 мм рт.ст.

Другой тип задач связан с участием водяного пара в различных процессах отвода или подвода тепла. Пока пар остается ненасыщенным, он участвует в этих процессах как обычный трехатомный идеальный газ. В частности, внутрен-

няя энергия V молей водяного пара равна $U=\mathbf{v}\cdot 3RT$, а молярная теплоемкость при постоянном объеме равна $C_V=3R$. Если же пар становится насыщенным и происходит его конденсация или, напротив, жидкость испаряется, задача усложняется. В частности, количество теплоты, которое необходимо подводить для испарения жидкости или которое выделяется при конденсации пара, зависит от условий протекания этих процессов.

Согласно первому началу термодинамики, удельная теплота испарения $r = \Delta U + A$, где ΔU — изменение внутренней энергии системы жидкость-пар, А - работа пара против внешних сил. Обычно в процессе подвода или отвода тепла при испарении или конденсации сохраняются постоянными давление и температура (табличные данные теплот испарения различных жидкостей приводятся именно при этих условиях). Изменение внутренней энергии ΔU связано в основном с изменением потенциальной энергии взаимодействия молекул вещества в жидком и газообразном состояниях. Работа А может быть рассчитана с помощью уравнения состояния. Так, для испарения m=1 г воды при температуре $T=373~{
m K}$ и давлении насыщенного пара $p_{_{\Pi {
m H}}}=10^5~{
m \Pi a}$ необходимо подвести количество теплоты r = 2260~Дж/г. Работа пара против внешних сил, поддерживающих постоянное давление, равна $A = p_{\text{пн}}(V_{\text{к}} - V_0)$, где V_0 – начальный объем, который занимает 1 г воды при 100 °C (т.е. 1 см 3), V_{ν} - конечный объем, который занимает 1 г пара при 100 °C. По уравнению состояния, плотность пара при комнатных температурах (~300 К) примерно в тысячу раз меньше плотности воды (т.е. 1 $_{\Gamma}/_{\text{CM}}^{3}$), поэтому

$$A = p_{\text{пн}} V_{\text{к}} = \frac{m}{M} RT \approx 170 \, \text{Дж}.$$

Таким образом, вклад работы против внешнего давления в теплоту испарения невелик (~8%). Однако встречаются задачи, в которых его необходимо учитывать.

Ниже мы рассмотрим конкретные примеры задач двух указанных типов.

Задача 1. Летним днем перед грозой плотность влажного воздуха (масса пара и воздуха в 1 м³) равна $\rho = 1140 \text{ г/м}^3$ при давлении p = 100 кПа и температуре t = 30 °C. Найдите отношение парциального давления водяного пара, содержащегося в воздухе, к парциальному давлению сухого воздуха. Принять, что молярные массы воздуха и пара равны $M_{\rm B} = 29 \text{ г/моль и } M_{\rm H} = 18 \text{ г/моль соответственно. Универсальная газовая постоянная <math>R = 8,31 \text{ Дж/(моль · K)}$.

Давление влажного воздуха складывается из парциальных давлений сухого воздуха и пара:

$$p = p_{\scriptscriptstyle \rm B} + p_{\scriptscriptstyle \rm II}$$
.

Плотность влажного воздуха равна

$$\rho = \rho_{\rm\scriptscriptstyle R} + \rho_{\rm\scriptscriptstyle II} \,,$$

где $\rho_{_{\rm B}}$ – плотность воздуха, а $\rho_{_{\rm II}}$ – плотность пара. По уравнению состояния,

$$p_{_{\mathrm{II}}} = \frac{\rho_{_{\mathrm{II}}}}{\mathrm{M}_{_{\mathrm{II}}}} RT$$
 и $p = \frac{\rho_{_{\mathrm{B}}}}{\mathrm{M}_{_{\mathrm{B}}}} RT$.

Решая совместно все эти уравнения, получим

$$\rho_{_{\rm B}} = \frac{\rho M_{_{\rm B}} - p M_{_{\rm II}} M_{_{\rm B}} / (RT)}{M_{_{\rm B}} - M_{_{\rm II}}}, \ \rho_{_{\rm II}} = \frac{p M_{_{\rm II}} M_{_{\rm B}} / (RT) - \rho M_{_{\rm II}}}{M_{_{\rm B}} - M_{_{\rm II}}}.$$

Из уравнения состояния найдем

$$\frac{p_{_{\Pi}}}{p_{_{\mathrm{R}}}} = \frac{\mathrm{M}_{_{\mathrm{B}}} \mathrm{\rho}_{_{\Pi}}}{\mathrm{M}_{_{\Pi}} \mathrm{\rho}_{_{\mathrm{R}}}},$$

или окончательно

$$\frac{p_{_{\rm II}}}{p_{_{\rm B}}} = \frac{1 - p M_{_{\rm B}}/(RT\rho)}{p M_{_{\rm II}}/(RT\rho) - 1} \approx \frac{1}{37}.$$

Заметим, как это следует из таблиц, что пар в условиях задачи оказывается в состоянии, близком к насыщению. Кроме того, расчетная величина отношения давлений пара и воздуха оказывается чрезвычайно чувствительной к численным значениям величин, входящих в условия задачи. Это связано с тем, что на фоне достаточно большого давления воздуха мы хотим оценить вклад сравнительно небольшого давления пара.

Задача 2. В парной бани относительная влажность воздуха составляла $\varphi_1 = 50\%$ при температуре $t_1 = 100$ °C. После того как температура воздуха уменьшилась до $t_2 = 97$ °C и пар «осел», относительная влажность воздуха стала $\varphi_2 = 45\%$. Какая масса воды выделилась из влажного воздуха парной, если ее объем V = 30 м³? Известно, что при температуре t_2 давление насыщенного пара на 80 мм рт.ст. меньше, чем при t_1 .

Давление насыщенного пара при 100 °C составляет $p_{\rm 1H}=760$ мм рт.ст. = 10^5 Па, а при 97 °C – $p_{\rm 2H}=680$ мм рт.ст. По уравнению состояния, массы пара в парной равны, соответственно,

$$m_1 = \frac{\phi_1 p_{1\text{\tiny H}} V \mathbf{M}_{_\Pi}}{R T_1 \cdot 100\%} \ \text{if} \ m_2 = \frac{\phi_2 p_{2\text{\tiny H}} V \mathbf{M}_{_\Pi}}{R T_2 \cdot 100\%},$$

где $M_{_{\rm II}}$ = 18 г/моль – молярная масса пара. Значит, из влажного воздуха сконденсировалась масса воды

$$\Delta m = m_1 - m_2 = \frac{V \rm{M}_{_{\rm{II}}}}{R \cdot 100\%} \left(\frac{\phi_1 p_{_{\rm{1H}}}}{T_1} - \frac{\phi_2 p_{_{\rm{2H}}}}{T_2} \right) \approx 1.6 \ \rm{Kr} \,.$$

Задача 3. В цилиндре под поршнем с пружиной заперты водяной пар и вода, масса которой M=1 г. Температура в цилиндре поддерживается постоянной и равной 100 °С. Когда из цилиндра выпустили часть пара массой m=7 г, поршень стал двигаться. После установления равновесия объем содержимого в цилиндре под поршнем оказался в 2 раза меньше первоначального. Какая масса пара была в цилиндре и какой объем он занимал в начале опыта? Поршень занимает положение равновесия у дна цилиндра, когда пружина не напряжена.

Вода вначале занимала объем 1 см 3 , тогда как пар, по уравнению состояния, занимал объем не меньше 12 л, так что объемом, занимаемым водой можно пренебречь. Пар в начале насыщенный (в цилиндре есть вода), и его давление равно $p_{1\mathrm{H}}=10^5$ Па. В конце опыта давление пара составляло $p_2=0.5p_{1\mathrm{H}}=0.5\cdot10^5$ Па, там как сила, действующая со стороны пружины на поршень, уменьшилась вдвое. Вся вода при этом испарилась, поскольку поршень перестал двигаться, и пар стал ненасыщенным.

Пусть начальная масса пара равна $m_{_{\rm II}}$. Тогда в начале опыта

$$p_{1\Pi}V = \frac{m_{\Pi}}{M_{\Pi}}RT,$$

где $\mathbf{M}_{_{\Pi}}$ – малярная масса пара. В конце опыта

$$\frac{1}{2} \, p_{\rm 1\pi} \, \frac{V}{2} = \frac{m_{_{\rm II}} + M - m}{M_{_{\rm II}}} \, RT \, .$$

Из этих двух уравнений находим

$$m_{\Pi} = \frac{4}{3}(m-M) = 8 \Gamma.$$

Объем который занимал пар, равен

$$V = \frac{m_{_{\rm II}}}{M_{_{\rm II}}} \frac{RT}{p_{_{\rm III}}} = 13.8 \ \mathrm{л}$$
.

Задача 4. В сосуде объемом $V_1=20$ л находятся вода, насыщенный водяной пар и воздух. Объем сосуда при постоянной температуре медленно увеличивают до $V_2=40$ л, давление в сосуде при этом уменьшается от $p_1=3$ атм до $p_2=2$ атм. Определите массу воды в сосуде в конце опыта, если общая масса воды и пара составляет m=36 г. Объемом, занимаемым жидкостью, в обоих случаях пренебречь.

Анализ изотермы для пара (см. рисунок) показывает, что во время опыта парциальное давление пара оставалось постоянным (в конце опыта, как и в начале, в сосуде была вода). Давление в сосуде менялось только за счет изменения давления воздуха. Так как при постоянной температуре объем, занимаемый воздухом, увеличился вдвое, то его давление в конце опыта уменьшилось тоже вдвое. Пусть в конце опыта в сосуде осталась масса пара $m_{\rm n2}$. Так как пар оставался насыщенным при постоянном давлении и температуре, а объем его увеличился вдвое, то в начале опыта его масса в сосуде была $m_{\rm n1} = m_{\rm n2}/2$.

После этого предварительного анализа найдем давление пара $p_{_{\rm II}}$ в сосуде. В начале опыта

$$p_{_{\rm II}}+p_{_{\rm B}}=p_{_{\rm 1}},$$

где $p_{_{\mathrm{R}}}$ – давление воздуха в начале. В конце

$$p_{_{\rm II}} + \frac{p_{_{\rm B}}}{2} = p_2.$$

Следовательно,

$$p_{_{\Pi}} = 2p_{_{2}} - p_{_{1}} = 1$$
 atm.

Так как пар насыщенный, его температура равна $100\,^{\circ}\mathrm{C}$. По уравнению состояния теперь можно найти массу пара в сосуде:

$$p_{\Pi}(V_2 - V_1) = \frac{m_{\Pi 2} - m_{\Pi 1}}{M_{\Pi}} RT = \frac{m_{\Pi 2}}{2M_{\Pi}} RT,$$

где $M_{_{\rm II}}$ = 18 г/моль – молярная масса пара, откуда

$$m_{_{\Pi 2}} = \frac{2 M_{_{\Pi}} p_{_{\Pi}}}{RT} (V_2 - V_1) = 24 \text{ r}.$$

Итак, в сосуде осталась масса воды

$$m_{_{\rm B}} = m - m_{_{\rm II}2} = 12 \text{ r}.$$

Задача 5. Жидкость и ее насыщенный пар находятся в цилиндре под поршнем при некоторой температуре. При медленном изобарическом нагреве температура системы повысилась до 100 °C, а объем увеличился на 54%. На сколько градусов нагрели содержимое цилиндра, если масса пара вначале составляла 2/3 от полной массы смеси? Начальным объемом жидкости по сравнению с объемом системы пренебречь.

Пусть массы пара и жидкости вначале были $m_{_{\rm II}}$ и $m_{_{\rm Ж}}$, а температура в сосуде была $T_{_{\rm H}}$. При изобарическом нагреве смеси ее температура не меняется, пока жидкость испаряется. По условию, температура повысилась до $T_{_{\rm K}}=373\,$ K, значит, вся жидкость испарилась (состояние 2 на рисунке)

и пар массой $m_{_{\rm II}}+m_{_{
m IK}}$ при том же давлении нагрелся на $\Delta T=T_{_{
m V}}-T_{_{
m IV}}.$

Запишем уравнения состояния для начального и конечного состояний системы:

$$pV_{_{\rm H}} = \frac{m_{_{\rm II}}}{M_{_{\rm II}}}RT_{_{\rm H}},$$

$$pV_{_{\mathrm{K}}} = \frac{m_{_{\mathrm{II}}} + m_{_{\mathrm{3K}}}}{\mathrm{M}_{_{\mathrm{II}}}} RT_{_{\mathrm{K}}},$$

где М_п - молярная масса пара. По условию,

$$V_{_{\mathrm{K}}} = \beta V_{_{\mathrm{H}}} = 1.54 V_{_{\mathrm{H}}}$$

И

$$\frac{m_{_{\rm II}}}{m_{_{\rm II}}+m_{_{\rm IK}}}=\alpha=\frac{2}{3}.$$

Из приведенных равенств находим

$$\frac{T_{K}}{T_{K}} = \beta \alpha ,$$

и окончательно

$$\Delta T = T_{\text{\tiny K}} - T_{\text{\tiny H}} = T_{\text{\tiny K}} \frac{\beta \alpha - 1}{\beta \alpha} \approx 10 \text{ K}.$$

Задача 6. В сосуде находятся жидкость и ее насыщенный пар. В процессе изотермического расширения объем, занимаемый паром, увеличивается в $\beta=3$ раза, а давление пара уменьшается в $\alpha=2$ раза. Найдите отношение массы жидкости $m_{_{\rm H}}$ к массе пара $m_{_{\rm H}}$, которые первоначально содержались в сосуде. Объемом, занимаемый жидкостью, пренебречь.

В изотермическом процессе давление уменьшается в 2 раза, а объем увеличивается в 3 раза. Следовательно, система жидкость—пар массой $m_{_{\rm II}}+m_{_{\rm Ж}}$ из начального состояния, соответствующего состоянию 3 на рисунке, переходит в конечное, соответствующее состоянию 1 на том же рисунке. В промежуточном состоянии 2 вся жидкость испарилась при постоянном давлении $p=p_{_{\rm III}}$ и заняла объем V_2 :

$$p_{\scriptscriptstyle \Pi H} V_2 = \frac{m_{\scriptscriptstyle \Pi} + m_{\scriptscriptstyle \mathcal{K}}}{M_{\scriptscriptstyle \Pi}} \, RT \,,$$

где $\rm M_{_{II}}$ – молярная масса пара. В конечном состоянии $\it 1$ та же масса пара при давлении $\it p_1 = \it p_{_{\rm IIH}}/\alpha$ и той же температуре заняла объем $\it V_{_{\rm I}}$:

$$p_1 V_1 = \frac{m_{_{\mathrm{IK}}} + m_{_{\mathrm{II}}}}{\mathrm{M}_{_{\mathrm{II}}}} RT.$$

По условию задачи, в начальном состоянии пар массой $m_{_{\rm II}}$ занимал объем $V_3=V_1/\beta$:

$$p_{\text{\tiny IIH}}V_3 = \frac{m_{\text{\tiny II}}}{M_{\text{\tiny II}}}RT.$$

Из этих равенств находим

$$V_1 = \alpha V_2$$
,

$$\frac{m_{_{\rm II}} + m_{_{_{\rm JK}}}}{m_{_{_{\rm II}}}} = \frac{V_2}{V_3} = \frac{V_1/\alpha}{V_1/\beta} = \frac{\beta}{\alpha}$$
.

Тогда окончательно

$$\frac{m_{_{\mathrm{M}}}}{m_{_{\mathrm{H}}}} = \frac{\beta}{\alpha} - 1 = \frac{1}{2}.$$

Задача 7. В герметичный сосуд, содержащий сухой воздух при температуре 17°C и некотором давлении, впрыснули немного воды и стали медленно нагревать содержимое. Определите давление воздуха в сосуде до впрыскивания воды, если к тому моменту, когда вся вода испарилась, давление воздуха составляло 46% от общего давления в сосуде. Начальный объем воды составил 1/1100 от объема сосуда. Универсальная газовая постоянная $R=8,31~\text{Дж/(моль}\cdot K)$, молярная масса воды M=18~г/моль, плотность воды $\rho=1~\text{г/см}^3$.

Пусть объем сосуда $V_{\rm 0}$, тогда масса пара в конечном состоянии, равная начальной массе воды, составляет

$$m_{_{\Pi}} = \rho \frac{V_0}{1100}.$$

Запишем уравнение состояния для воздуха вначале:

$$p_{1_{\rm B}}V_0 = \frac{m_{_{\rm B}}}{M_{_{\rm B}}}RT_1,$$

где ${\bf M}_{_{\rm B}}$ – молярная масса воздуха. В конечном состоянии пар и воздух занимают один и тот же объем и имеют одинаковую температуру. Поэтому их давления $p_{_{\rm II}}$ и $p_{_{\rm 2B}}$ относятся, как соответствующие количества молей:

$$\frac{p_{_{\rm II}}}{p_{_{\rm 2B}}} = \frac{m_{_{\rm II}} M_{_{\rm B}}}{m_{_{\rm B}} M}.$$

С другой стороны, по условию задачи,

$$\frac{p_{2B}}{p_{2B} + p_{\Pi}} = \beta = 0.46.$$

Записанные равенства позволяют определить отношение масс пара и воздуха:

$$\frac{m_{_{\rm B}}}{m_{_{\rm II}}} = \frac{\beta}{1-\beta} \frac{\rm M_{_{\rm B}}}{\rm M}$$

и начальное давление воздуха в сосуде:

$$p_{1B} = \frac{m_{\rm B}}{M_{\rm B}} \frac{RT_1}{V_0} = \frac{RT_1}{V_0} \frac{\beta}{1-\beta} \frac{m_{\rm II}}{M} = RT_1 \frac{\beta}{1-\beta} \frac{\rho}{M} \frac{1}{1100} \approx 10^5 \text{ II a}.$$

Задача 8. Вода и водяной пар находятся в цилиндре под поршнем при температуре 110 °С, при этом вода занимает 0,1% объема цилиндра. При медленном изотермическом увеличении объема вода начинает испаряться. К моменту, когда она вся испарилась, пар совершил работу A = 177~Дж, а объем, который он занимал, увеличился на $\Delta V = 1,25~\text{л}$. Найдите давление, при котором производился опыт. Сколько воды и пара было в цилиндре в начальном состоянии?

Если V – объем цилиндра, то начальная масса воды равна

$$m_{_{\mathfrak{M}}} = \rho V \cdot 10^{-3},$$

где $\rho = 10^3~{\rm kr/m}^3$ — плотность воды. При постоянном давлении и температуре вода испарилась, и пар совершил работу

$$A = p\Delta V = \frac{m_{_{\rm M}}}{M} RT ,$$

где ${\rm M_{\scriptscriptstyle II}}=18~{\rm г/моль}$ – молярная масса пара. Это равенство позволяет определить давление p, при котором проводился опыт:

$$p = \frac{A}{\Delta V} = 1,42 \cdot 10^5 \text{ Ha},$$

а затем и массу жидкости в начале опыта:

$$m_{_{\mathfrak{K}}} = \frac{AM_{_{\Pi}}}{RT} = 1 \text{ r}.$$

Начальную массу пара (пар занимал 99,9% объема цилинд-

ра) найдем по уравнению состояния:

$$pV = p \frac{m_{_{3K}}}{\rho \cdot 10^{-3}} = \frac{m_{_{1I}}}{M_{_{1I}}} RT$$

откуда

$$m_{_{\rm II}} = \frac{p m_{_{
m IK}} M_{_{\rm II}}}{R T
ho \cdot 10^{-3}} = 0.8 \
ho.$$

Задача 9. В цилиндре под поршнем находится смесь $v_{\rm m}$ молей жидкости и $v_{\rm m}$ молей ее насыщенного пара при температуре Т. К содержимому цилиндра подвели количество теплоты Q при медленном изобарическом процессе, и температура внутри цилиндра увеличилась на ΔT . Найдите изменение внутренней энергии содержимого цилиндра. Объемом, занимаемым жидкостью, пренебречь.

При медленном подводе тепла в изобарическом процессе температура не менялась, пока не испарилась вся жидкость. В дальнейшем температура пара в количестве $\mathbf{v}_{\rm n} + \mathbf{v}_{\rm ж}$ увеличилась на ΔT . По закону сохранения энергии,

$$Q = \Delta U + p(V_{_{\rm K}} - V_{_{\rm H}}),$$

где $p(V_{_{\rm K}}-V_{_{\rm H}})$ – работа пара против внешнего давления. По уравнению состояния,

$$pV_{\text{H}} = v_{\text{II}}RT$$
, $pV_{\text{K}} = (v_{\text{II}} + v_{\text{XK}})R(T + \Delta T)$.

Окончательно находим

$$\Delta U = Q - v_{_{\mathcal{H}}}RT - (v_{_{\Pi}} + v_{_{\mathcal{H}}})R\Delta T.$$

Задача 10. В цилиндре под поршнем находится один моль ненасыщенного пара при температуре Т. Пар сжимают в изотермическом процессе так, что в конечном состоянии половина его массы сконденсировалась, а объем пара уменьшился в k = 4 раза. Найдите молярную теплоту конденсации пара, если в указанном процессе от системы жидкостьпар пришлось отвести количество теплоты Q(Q > 0). Пар можно считать идеальным газом.

Указание. Работа, совершаемая в изотермическом процессе \lor молями пара при расширении от объема V_1 до V_2

равна
$$A = vRT \ln \frac{V_2}{V_1}$$
.

Конденсация пара начнется в состоянии 2 (см. рисунок), и в дальнейшем до конечного состояния 3 давление меняется не будет. Количество образовавшейся жидкости равно половине первоначального количества пара, т.е. $\nu_{_{\rm ж}} = \nu_{_{\rm II}}/2$. Количество теплоты, отведенное на участке 1–3, равно

$$Q_{13} = Q_{12} + Q_{23}$$
.

На участке 1-2 пар остается ненасыщенным, его внутренняя энергия в изотермическом процессе не меняется, поэтому тепло отводится в количестве, равном работе сжатия внешних сил:

$$Q_{12} = v_{\Pi} RT \ln \frac{V_1}{V_2}$$
.

На участке 2–3 конденсация пара и выделение тепла происходят при постоянном давлении и температуре, и $Q_{23} = \Lambda v_{\pi}$, где Λ – молярная теплота конденсации пара. Кроме того, для этого участка из уравнения состояния находим

$$p_2(V_2 - V_3) = v_{xx}RT.$$

Последнее равенство, уравнение состояния $p_2V_2=\mathbf{v}_{_1}RT$ и условие $V_1=kV_3$ позволяют найти отношение объемов V_1/V_2 :

$$\frac{V_1}{V_2} = k \frac{\mathbf{v}_{_{\mathrm{II}}} - \mathbf{v}_{_{\mathrm{K}}}}{\mathbf{v}_{_{_{\mathrm{II}}}}}.$$

Таким образом, окончательно находим

$$Q_{13} = Q = v_{\Pi}RT \ln \left(k \frac{v_{\Pi} - v_{\infty}}{v_{\Pi}} \right) + \Lambda v_{\infty},$$

откуда

$$\Lambda = 2Q - 2RT \ln 2.$$

Упражнения

- **1.** После теплого летнего дождя относительная влажность воздуха достигла 100%. При этом плотность влажного воздуха (масса пара и воздуха в 1 м³) ρ = 1171 г/м³, его давление p = 100 кПа и температура t = 22 °C. Найдите по этим данным давление насыщенного пара при температуре 22 °C. Молярные массы воздуха и пара равны $M_{_{\rm B}}$ = 29 г/моль и $M_{_{\rm R}}$ = 18 г/моль соответственно, универсальная газовая постоянная R = 8,31 Дж/(моль · К).
- **2.** В цилиндре под поршнем с пружиной заперт водяной пар в объеме $V_1=4$ л. Температура в цилиндре поддерживается постоянной и равной 100 °C. В цилиндр впрыскивается m=4 г воды, и поршень начинает перемещаться. После установления равновесия часть воды испарилась, а объем цилиндра увеличился в 2 раза. Какая масса пара была в цилиндре вначале? Сколько воды испарилось к концу опыта?
- **3.** Влажный термометр психрометра, висящего в комнате, показывает температуру 13 °C ($T_{\rm s}=286~{\rm K}$). Сухой термометр этого психрометра показывает при этом температуру 15 °C ($T_{\rm c}=288~{\rm K}$). Какова относительная влажность воздуха в комнате? Сколько росы выпадет из каждого кубометра влажного воздуха комнаты, если температура в ней понизится и сухой термометр будет показывать температуру 10 °C? Давление насыщенного водяного пара при температуре 15 °C равно $p=12,8~{\rm km}$ рт.ст. Также известно, что вблизи комнатной температуры малые относительные изменения давления насыщенного водяного пара $\Delta p/p$ связаны с малыми относительными изменениями его температуры $\Delta T/T$ соотношением $\Delta p/p=18\,{\Delta}T/T$.
- 4. Смесь воды и ее насыщенного пара занимает некоторый объем при температуре 90 °C. Если смесь нагревать изохорически, то вся вода испаряется при увеличении температуры на 10 °C. Чему равно давление насыщенного водяного пара при 90 °C, если в начальном состоянии масса воды составляла 29% от массы всей смеси? Объемом воды по сравнению с объемом смеси пренебречь.
- **5.** Насыщенный водяной пар находится в цилиндре под поршнем при температуре $t=120\,^{\circ}\mathrm{C}$. При медленном изотермическом уменьшении объема цилиндра пар начинает конденсироваться. К моменту, когда сконденсировалось m=5 г пара, объем пара уменьшился на $\Delta V=4,5$ л. Какая работа была совершена внешней силой в этом процессе? Сколько пара было в цилиндре вначале, если в конце опыта вода занимала 0,5% объема цилиндра?

Информацию о журнале «Квант» и некоторые материалы из журнала можно найти в ИНТЕРНЕТЕ по адресам:

Курьер образования http://www.courier.com.ru

Vivos Voco! http://vivovoco.nns.ru (раздел «Из номера»)

Московский детский клуб « Компьютер» math.child.ru