- 7. В схеме, показанной на рисунке 4, все конденсаторы разряжены, а двойной ключ K находится в разомкнутом состоянии. Его перевели в положение 1, а затем, спустя достаточно большое время, в положение 2. Параметры элементов схемы даны на рисунке. Считая диоды идеальными, найдите заряд, который установится на конденсаторе емкостью C_2 .
- 8. Плоскую рамку, состоящую из небольшого числа N витков тонкого провода, вращают вокруг горизонтальной оси, лежащей в плоскости рамки, с угловой скоростью ω в однородном вертикальном магнитном поле. Концы обмотки замкнуты накоротко, а ее общее сопротивление равно R. Пренебрегая индуктивностью обмотки, найдите величину B индукции магнитного поля, если площадь каждого витка S, а для поддержания вращения к рамке необходимо прикладывать в среднем момент сил $M_{\rm cp}$.
- 9. Диск радиусом R из льда с показателем преломления n=1,3 разрезали по диаметру. Перпендикулярно плоскости разреза на одну из половин диска направили узкий параллельный пучок света, который вышел параллельно падающему пучку на некотором расстоянии L от него. Найдите расстояние L, если интенсивности падающего и выходящего пучков почти одинаковы.
- **10.** Точечный источник S, дающий свет с длиной волны λ , помещен в главный фокус собирающей линзы. За линзой находится призма, склеенная из двух стекол с показателями преломления n_1 и n_2 ($n_1 > n_2$). Ось линзы

Рис. 5

проходит по границе раздела стекол и перпендикулярна к передней грани призмы (рис.5). Размер передней грани призмы 2b меньше диаметра линзы. Преломляющие углы призмы малы: $\alpha \ll 1$ рад. Найдите максимальное число интерференционных полос, которые можно наблюдать на экране, расположенном перпендикулярно оси линзы за призмой.

Факультет вычислительной математики и кибернетики

- 1. Автомобиль трогается с места с ускорением $a_1 = 2 \text{ m/c}^2$. При скорости v = 50 км/ч ускорение автомобиля стало равным $a_2 = 1 \text{ m/c}^2$. С какой установившейся скоростью v_0 будет двигаться автомобиль, если сила сопротивления пропорциональна скорости? Силу тяги двигателя при движении автомобиля считать постоянной.
- **2.** Маленькое тело соскальзывает без начальной скорости по внутренней поверхности полусферы с высоты,

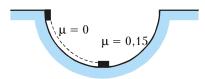
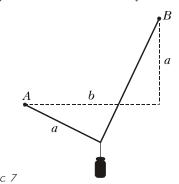



Рис. 6

равной ее радиусу (рис.6). Одна половина полусферы абсолютно гладкая, а другая — шероховатая, причем на этой половине коэффициент трения между телом и поверхностью $\mu=0,15$. Определите ускорение a тела в тот момент, как только оно перейдет на шероховатую поверхность. Ускорение свободного падения принять равным $g=10~{\rm M/c}^2$.

3. На двух гвоздях, вбитых в стену в точках A и B (рис.7), повешена веревка. Расстояние между гвоздями

по горизонтали $b=\sqrt{3}\,$ м $\approx 1,73\,$ м, разность высот, на которых вбиты гвозди, $a=1\,$ м, длина веревки равна a+b. На веревке на расстоянии a от точки A подвешивают груз, который не касается стены. Найдите отношение α сил натяжения веревки слева и справа от груза. Ускорение свободного падения принять равным $g=10\,$ м/с 2 . Веревку считать невесомой и нерастяжимой.

4. В лифте, движущемся с ускорением, равным $a = 5 \text{ м/c}^2$ и направленным вверх, находится цилиндрический сосуд, закрытый поршнем массой

 $M=20~{\rm kr}$ и площадью $S=100~{\rm cm}^2$. Под поршнем находится идеальный газ. Поршень расположен на расстоянии $h=22~{\rm cm}$ от дна сосуда. Определите, на какую величину Δh переместится поршень, если лифт будет двигаться с тем же по модулю ускорением, но направленным вниз. Температура газа не изменяется. Атмосферное давление $p_0=10^5~{\rm Ha}$, ускорение свободного падения $g=10~{\rm m/c}^2$. Трением поршня о стенки сосуда пренебречь.

5. В закрепленном под углом $\alpha = 60^{\circ}$ к горизонту цилиндре может без трения двигаться поршень массой M = 10 кг и площадью S = 50 см² (рис.8).

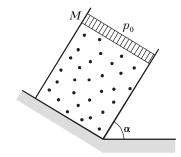


Рис. 8

Под поршнем находится одноатомный идеальный газ. Газ нагревают так, что поршень перемещается на расстояние l=5 см. Какое количество теплоты Q было сообщено газу? Атмосферное давление $p_0=10^5$ Па, ускорение свободного падения $g=10~{\rm M/c}^2$.

- **6.** Два удаленных друг от друга на большое расстояние металлических шара радиусами $r_1=5$ см и $r_2=10$ см, несущие заряды $q_1=2\cdot 10^{-9}$ Кл и $q_2=-10^{-9}$ Кл соответственно, соединяют тонким проводом. Какой заряд q протечет при этом по проводу?
- 7. Два маленьких шарика массами $m_1=6$ г и $m_2=4$ г, несущих заряды $q_1=10^{-6}$ Кл и $q_2=-5\cdot 10^{-6}$ Кл соответственно, удерживают на расстоянии l=2 м друг от друга. В некоторый момент оба шарика отпускают, сообщив второму скорость $v_0=3$ м/с, направленную от первого шарика вдоль линии, соединяющей их центры (рис.9). На какое максимальное расстояние L разойдутся шарики друг от друга? Силу тяжести не учитывать. Электрическую

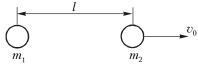


Рис. 9