А теперь сформулируем и докажем утверждение, обобщающее задачи 1 и 2 Архимеда.

Предложение. Пусть $AB\ u\ AC\ -$ диаметры полукругов (рис.8). Впишем в образовавшийся роговидный угол последовательность окружностей γ_1 , γ_2 , ..., с радиусами r_1 , r_2 , ..., попарно касающихся друг друга; положение первой окружности произвольно. Обозначим через h_n длину перпендикуляра, опущенного из центра n-й окружности на AB. Отношения $x_n=h_n:r_n$ образуют арифметическую прогрессию с разностью 2.

Доказательство. Пусть O_1 , O_2 , ... – центры окружностей γ_1 , γ_2 , ... Будем считать AB=2R, AC=2r. Произведем инверсию полученной конструкции относительно окружности ф произвольного радиуса с центром в точке A. На рисунке 8 взята окружность ω радиуса 2R. В результате инверсии исходные полуокружности перейдут в лучи BL и C'K, перпендикулярные прямой AB, а $\gamma_1, \ \gamma_2, \ ... -$ в окружности $\gamma_1', \ \gamma_2', \ ...,$ касающиеся этих лучей и попарно друг друга. (Напомним, что центры P_1, P_2, \dots этих окружностей не являются инверсными для точек O_1 , О2, ...) Обозначим через р радиусы полученных окружностей. Опустим из центров O_1 и P_1 перпендикуляры O_1H и P_1N на прямую AB и обозначим $O_1H=h_1$, $P_1N=\mathfrak{\eta}$. Окружности γ_1 и γ_1' , как и треугольники AO_1H и AP_1N , гомотетичны с одним и тем же коэффициентом гомотетии. Поэтому $x_1 =$ $=h_{_{1}}/r_{_{1}}=\eta/
ho$. Для следующей окружности имеем $x_2 = h_2/r_2 = x_1 + 2$. Аналогично, для любого натурального числа n выводится рекуррентное соотношение

$$x_{n+1} = x_n + 2.$$

Следовательно, последовательность $\left\{ x_{n}\right\}$ представляет собой арифмети-

ческую прогрессию с разностью 2. Предложение доказано.

Чтобы получить решение задачи 1 Архимеда, нужно к последовательности $\{x_n\}$ присоединить еще один член $x_0=0$. При этом к последовательности вписанных окружностей присоединяется полуокружность арбелона с диаметром CB. Нужно только помнить, что в задаче 1 Архимед рассматривает отношение h_n не к радиусам r_n , а к диаметрам, поэтому у него возникает последовательность натуральных чисел, а у нас — четных чисел: 2, 4, 6, ...

Полагая в последовательности $\{x_n\}$ $x_1=1$, получаем последовательность нечетных чисел, т.е. решение задачи 2 Архимеда.

Архимеда интересовало и выражение для радиуса окружности, вписанной в арбелон (т.е. для r_1), через радиусы R и r исходных кругов. Он рассмотрел случай, когда r:R=3:5 и, используя пропорциональность отрезков, получил, что $r_1:R=6:19$. Доказательство Архимеда легко может быть перенесено на любой арбелон.

Инверсия дает возможность выразить r_n через R и r для любого n при произвольном расположении первой окружности. Для упрощения вычислений проведем их лишь для случая арбелона. Оставим те же обозначения, которые использовались при доказательстве предложения; радиус базисной окружности будем считать равным 2R. Тогда $AC' = 2R^2/r$ и $\rho =$ =R(R-r)/r. Центры P_1 , P_2 , ... окружностей γ_1' , γ_2' , ... лежат на серединном перпендикуляре NP_1 отрезка BC' (рис.9). При инверсии относительно окружности ω этот перпендикуляр перейдет в полуокружность Г, построенную на диаметре AN', рав- $_{\text{HOM}}$ 4Rr/(R+r). Пусть D – центр окружности Γ ; M_1 , M_2 , ... — точки пересечения Γ с γ_1 , γ_2 , ... соответственно; инверсными им будут точки M_1' , M_2' , ... Так как при инверсии углы сохраняются, то окружность Γ пересекает каждую из окружностей γ_n под прямым углом. Обозначим $\angle BAM_1 = \varphi_0$, $\angle M_nAM_{n+1} = \varphi_n$ для любого номера n, тогда $\angle BDM_1 = 2\varphi_0$, $\angle M_nDM_{n+1} = 2\varphi_n$. Очевидно, $\deg \varphi_0 = \rho/AN = (R-r)/(R+r)$,

$$tg(\phi_0 + \phi_1) = 3\rho/AN =$$

= 3(R-r)/(R+r),

и вообще,

$$\operatorname{tg}(\varphi_0 + \varphi_1 + ... + \varphi_n) =$$

= $(2n+1)(R-r)/(R+r)$.

Из треугольника M_1DO_1 имеем

$$\begin{split} r_{1} &= DM_{1} \text{tg } \phi_{1} = \\ &= \frac{2Rr}{R+r} \text{tg} \Big(\Big(\phi_{0} + \phi_{1} \Big) - \phi_{0} \Big) = \\ &= \frac{2Rr}{R+r} \cdot \frac{2\frac{R-r}{R+r}}{1+3\frac{\left(R-r\right)^{2}}{\left(R+r\right)^{2}}} = \frac{Rr(R-r)}{R^{2}+r^{2}-Rr} \,. \end{split}$$

Это результат Архимеда для произвольных R и r. Записывая для любого n угол φ_n в виде разности $\varphi_n = (\varphi_0 + \ldots + \varphi_n) - (\varphi_0 + \ldots + \varphi_{n-1})$, аналогично находим

$$r_n = \frac{Rr(R-r)}{Rr+n^2(R-r)^2}.$$

Упражнение 3. Покажите, что для второй задачи Архимеда (здесь $\varphi_0 = 0$)

$$r_n = \frac{4Rr(R-r)}{(R+r)^2 + 4n(n-1)(R-r)^2} \ .$$

В общем случае формулы для r_n имеют сложный вид.

В Предложении фиксированные окружности радиусов r и R касались друг друга внутренним образом. Как

(Окончание см. на с.54)



