Зачем закрывать отверстие, или Открытие линзы

A.CTACEHKO

Рассмотрим такую ситуацию: на непрозрачный экран с круглым отверстием нормально падает параллельный пучок света, или, что то же

самое, плоская световая волна. Теперь предлагается часть площади отверстия перекрыть непрозрачным препятствием — шариком, шайбой или кольцом.

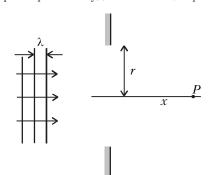
Вопрос: как изменится освещенность в некоторой точке за экраном, лежащей на оси отверстия? Скорее всего, любой прохожий ответит: конечно, уменьшится! И будет прав, но... не всегда и не совсем.

Конечно, бытовая практика убеждает в том, что уменьшение площади отверстия, пропускающего свет внутрь некоторого объема, уменьшает и освещенность этого объема: ведь для того и служат плотные шторы на окнах, для того и щурят глаза при ярком свете, а зрачки и помимо нашей воли уменьшают свой диаметр.

Но принципиально важен и встречный вопрос: а каково соотношение между длиной волны λ , радиусом отверстия r и расстоянием до точки наблюде-

ния x (рис.1)? Этот вопрос связан с пониманием роли интерференции, суть которой заключается во взаимодействии двух волн, пришедших в точку наблюдения (рис.2): если эти волны пришли в одной фазе (или со сдвигом фаз, кратным 2π , что соответствует разности хода волн, равной целому числу длин волн), то их «горбы» и «впадины» складываются; если же волны придут в противофазе (или с разностью хода, равной нечетному числу полуволн), то результатом их взаимодействия в данной точке может стать взаимное уничтожение.

Чтобы понять суть дела, повторим геометрические построения, которые до нас догадался сделать Огюстен Френель еще в начале прошлого века. Проведем из точки наблюдения Р (рис.3) несколько лучей: один из них пусть пройдет через центр отверстия, другой будет ровно на $\lambda/2$ длиннее, следующий на $\lambda/2$ длиннее предыдущего, ..., и опишем, как ножкой циркуля, каждым из этих лучей окружности в плоскости отверстия с радиусами r_1 , r_2 , ... Далее, разобьем первый круг на кольца $(a_1, \delta_1, ..., \mathfrak{d}_1, n_1, n_2, n_3)$ одной и той же площади. Согласно Гюйгенсу и Френелю, каждое из этих колец посылает в точку P вторичные волны (первичная волна пришла в плоскость самого отверстия), причем их амплитуды пропорциональны площадям колец (они, по построению, одинаковы), а сдвиг фаз нарастает с удалением от центра и



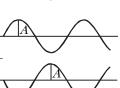


Рис. 1

-= -----

достигает величины, соответствующей разности хода $\lambda/2$ у края зоны радиу $com r_1$ (так называемой первой зоны Френеля). Этот набор слов иллюстрируется на рисунке 3 справа в виде малых векторов $\vec{a_1}$, $\vec{b_1}$, ..., $\vec{n_0}$, $\vec{s_1}$, имеющих (почти) одинаковую длину, но повернутых друг относительно друга на упомянутую разность фаз, причем последний вектор $\stackrel{\cdot}{s_1}$ по договору повернут относительно $\vec{a_1}$ на 180° (или π), что и свидетельствует о разности хода $\lambda/2$ между соответствующими волнами. Сумма всех этих малых векторов равна A_1 . А почему упомянуто слово «почти»? Да потому что кольцо $\mathfrak{s}_{_1}$ всетаки дальше от точки наблюдения, чем центральный диск a_1 ; следовательно, пришедший от него в точку Р сигнал будет чуть слабее.

Проделаем аналогичные построения для кольца, лежащего между окружностями с радиусами r_1 и r_2 (вторая зона Френеля). В результате сумма возмущений $\overrightarrow{a_2}$, $\overrightarrow{b_2}$, ..., $\overrightarrow{n_2}$, $\overrightarrow{a_2}$, приходящих от элементов этого кольца, даст вектор $\overrightarrow{A_2}$, противоположно направленный по отношению к вектору $\overrightarrow{A_1}$ (и несколько меньший по модулю). Таким образом, вторичные волны, пришедшие от второй зоны Френеля, почти полностью погасят те, которые пришли от первой зоны.

Уже на этом этапе почти все понятно: из отверстия радиусом r_1 в точку P придет света гораздо больше, чем из отверстия радиусом $r_2 > r_1$. Значит, уменьшив площадь отверстия, мы увеличили освещенность в точке наблюдения! Но продолжим увеличивать радиус отверстия. Достигнув трех зон Френеля, увидим, что вектор \overrightarrow{A}_3 будет почти равен вектору \overrightarrow{A}_1 , и, следова-

тельно, освещенность в точке P возрастет. Открыв четвертую зону, мы вновь почти погасим свет в точке наблюдения; пятая зона приведет опять к росту освещенности и т.д. Когда непрозрачное препятствие полностью исчезнет, спираль (так называемая спираль Френеля) свернется в центр окружности диаметром A_1 , а в точке P останется первичная волна с амплитудой A_0 , приблизительно вдвое меньшей A_1 .

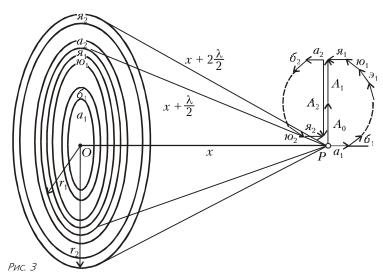
Но пора бы сделать и численные оценки. Из прямоугольного треугольника Os_1P (см. рис.3) можно найти радиус первой зоны Френеля:

$$r_1 = \sqrt{\left(x + \frac{\lambda}{2}\right)^2 - x^2} = \sqrt{\lambda x + \frac{\lambda^2}{4}} \approx \sqrt{\lambda x}$$
(1)

(здесь мы пренебрегли малой величиной $\lambda^2/4$, считая, что расстояние от отверстия до точки наблюдения много больше длины волны, т.е. $x\gg\lambda$). Аналогично найдем

$$r_2 = \sqrt{2\lambda x}$$
, $r_3 = \sqrt{3\lambda x}$, ..., $r_m = \sqrt{m\lambda x}$. (2)

(Отметим здесь замечательный факт: площадь круга, лежащего в плоскости отверстия, пропорциональна разности длин лучей, проведенных из точки P к окружности и к центру. Причем это верно не только для дискретных значений этой разности $(\frac{\lambda}{2}, 2\frac{\lambda}{2}, 3\frac{\lambda}{2}, \dots, \frac{\lambda}{2})$, но и для любых значений. Этот факт и был использован выше при построении элементарных возмущений $\overrightarrow{a_1}$, $\overrightarrow{b_1}$, ..., $\overrightarrow{s_1}$: именно благодаря тому, что одинаковым приращениям площади соответствуют одинаковые приращения длины луча, векторы возмуще-



ний на рисунке 3 образуют полуокружность.)

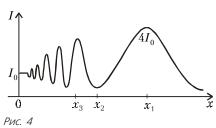
Пусть отверстие в непрозрачном экране имеет, например, радиус r = 1 мм, а длина волны, падающей на него, равна $\lambda = 0.5$ мкм. Тогда, согласно формуле (1), заданное отверстие представляет собою одну первую зону Френеля ($r_1 \equiv r$) для точки с координатой

$$x_1 = \frac{r^2}{\lambda} = 2 \text{ M}$$

— в этой точке будет наибольшая амплитуда (и интенсивность) волны. Теперь, отправившись от точки с координатой x_1 , будем приближаться к отверстию вдоль оси. На некотором расстоянии

$$x_2 = \frac{r^2}{2\lambda} = \frac{x_1}{2} = 1 \text{ M}$$

это фиксированное отверстие будет представлять собой уже две зоны Френеля; следовательно, в этой точке почти не будет света. Чем ближе к отверстию, тем большему числу зон Френеля оно будет соответствовать. Таким образом, для всех точек с координатой $x < x_1$ суммарная амплитуда всех вторичных волн будет изображаться вектором \hat{A} , начало которого закреплено, а конец движется по спирали Френеля против часовой стрелки (см. рис.3). Значит, свет и тьма будут сменять друг друга, а вблизи отверстия освещенность станет равной I_0 (соответствующей амплитуде A_0). Это изменение освещенности вдоль оси качественно изображено на рисунке 4.

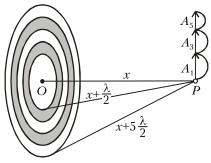


А что если мы отправимся в другую сторону? Для точек с координатой $x > x_1$ амплитуда волны будет изображаться вектором, конец которого скользит по спирали Френеля по часовой стрелке. Интенсивность света будет монотонно падать, причем можно сказать, по какому закону: $I \sim 1/x^2$, так как с большого расстояния отверстие будет казаться точкой.

Только что мы рассмотрели случай отверстия фиксированного радиуса. А если, наоборот, зафиксировать точку на оси и открывать отверстие, увеличивая его радиус по некоторому временному закону r(t)? Тогда, начиная от

полной темноты (при r=0), мы сначала откроем первую зону Френеля (при этом будет самый яркий свет с интенсивностью $I_1=4I_0$), затем вторую (тьма), третью (свет) и так далее, вплоть до полностью открытого фронта с интенсивностью первичной волны I_0 . Иными словами, при открывании отверстия наблюдатель в фиксированной точке зарегистрирует целую последовательность вспышек.

Но вернемся к самой спирали Френеля и обсудим, что будет, если как-то избавиться от всех четных зон, которые создают в точке P возмущения, гасящие те, которые приходят от нечетных зон. Действительно, закроем четные зоны nenpospauhumu кольцами (puc.5). Тогда все векторы \overrightarrow{A}_1 , \overrightarrow{A}_3 , \overrightarrow{A}_5 , ... выстроятся друг другу «в затылок», и



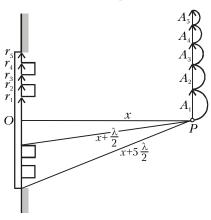
Puc 5

их сумма даст гораздо более сильный сигнал, чем одна зона.

Но зачем же так просто терять свет от четных зон? Лучше прикроем их *прозрачными* (стеклянными) кольцами (рис.6), подобрав их толщину так, чтобы они «подтормаживали» свет, но не просто как-нибудь, а внося разность фаз, в точности равную нечетному числу π . А именно, пусть их толщина h такова, что

$$h(n-1) = (2m+1)\frac{\lambda}{2},$$

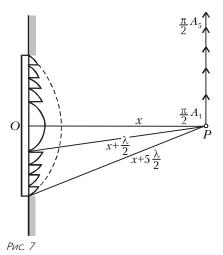
где n — показатель преломления этих



стеклышек, а $m=0,1,\dots$ При этом векторы $\overrightarrow{A_2}$, $\overrightarrow{A_4}$, ... «станут в строй», развернувшись в том же направлении, что и возмущения от нечетных зон. Очевидно, что суммарный сигнал в точке P еще увеличится.

А нужно ли так грубо обращаться с фазой? Мы ведь можем так отшлифовать эти стеклянные кольца, чтобы в пределах каждой зоны они плавно изменяли фазы проходящего через них света, компенсируя геометрическое запаздывание (рис.7; сплошная ступенчатая линия слева). В результате полуокружность диаметром A_1 развернется в отрезок длиной $\frac{\pi}{2}A_1$. То же самое произойдет в каждой зоне Френеля, так что вся спираль развернется в один отрезок прямой — и в точке P будет достигнута максимально возможная освещенность.

Но зачем же изготавливать из стекла такое ступенчатое тело? Ведь это даже и неудобно. Поэтому добавим в каждой зоне такую толщину стекла, которая вносила бы разность хода в целое число длин волн, обеспечивая при этом плав-



ные обводы (рис.7; штриховая линия слева). Ба! Да ведь это же линза! А точка P, о которой мы так заботились, — ее фокус.

Так ради чего старались? А ради того, чтобы понять, что и просто круглое отверстие обладает свойствами линзы. Причем у этой «линзы» много «фокусов» (см. рис.4), между которыми расположены точки минимальной интенсивности. А куда же делась энергия из этих точек? Никуда, просто она перераспределилась в плоскости, перпендикулярной оси, так что каждая «темная» точка оказалась окруженной системой светлых колец.