Законы

Паскаля и Архимеда

А. ШЕРОНОВ

О ЗАКОНУ ПАСКАЛЯ, ДАВление в окрестности некоторой точки, находящейся в жидкости или газе, передается во все стороны без изменений. В соответствии

с законом Архимеда, на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа, вытесненного этим телом. В поле тяжести в жидкостях или газах давление в точках, отличающихся по высоте на h, изменяется на $\rho g h$, где ρ — плотность жидкости или газа, g — ускорение свободного падения.

Рассмотрим теперь некоторые характерные примеры использования законов Паскаля и Архимеда при решении задач.

Задача 1. Атмосфера Венеры состоит в основном из углекислого газа (CO_2) , температура которого вблизи поверхности планеты $T = 800 \ K$, а nлотность $\rho = 6.6 \ г/л$. Оцените запасы СО, на Венере, считая, что толщина атмосферы много меньше радиуса планеты r = 6300 км. Какой толщины была бы атмосфера Венеры, если бы она была равноплотной с давлением и температурой газа, равными их значениям у поверхности планеты? Ускорение свободного падения на Венере g = 8,2 м/ c^2 , универсальная газовая постоянная R = $= 8,31 \ \mathcal{J} \times / (моль \cdot K), молярная масса$ углекислого газа $M = 44 \ r/моль.$

По уравнению состояния идеального газа, давление у поверхности Венеры равно $p=\rho RT/M$. Это же давление равно весу атмосферы, деленному на площадь поверхности планеты: $p=mg/(4\pi r^2)$. Отсюда находим массу углекислого газа:

$$m = \frac{4\pi r^2 \rho RT}{Mg} \approx 6 \cdot 10^{19} \text{K}\Gamma.$$

В равноплотной атмосфере толщиной h давление у поверхности (на глубине h) равно ρgh . Сравнивая это

выражение с уравнением состояния, находим толщину равноплотной атмосферы:

$$h = \frac{RT}{Mq} \approx 2 \cdot 10^4 \text{ M}.$$

Задача 2. Мыльный пузырь надувают азотом. При какой величине диаметра пузыря он начнет всплывать в атмосферном воздухе той же температуры? Поверхностное натяжение мыльного раствора $\sigma = 45 \text{ мH/м}$, молярная масса воздуха $M_{\rm B} = 29 \text{ г/моль}$, азота $M_{\rm a} = 28 \text{ г/моль}$, атмосферное давление $p_0 = 10^5$ Па, массой пленки пренебречь.

Азот внутри мыльного пузыря находится под избыточным, по сравнению с атмосферным, давлением $\Delta p =$ $= 8\sigma/d$, где d – диаметр пузыря. Этот результат проще всего получить, если мысленно разрезать пузырь на две равные половинки плоскостью, проходящей через его центр, и рассмотреть условие равновесия этих половинок. Если избыточное давление в пузыре равно Δp , то половинки отрываются друг от друга с силой $\Delta p\pi d^2/4$. С другой стороны, они притягиваются друг к другу силами поверхностного натяжения мыльной пленки, действующими на длине окружности πd и равными 2₅πd (коэффициент «2» учитывает наличие двух поверхностей у пленки). Сравнение этих двух сил и дает величину избыточного давления под пленкой: $\Delta p = 8\sigma/d$.

Пузырь всплывет при условии, что выталкивающая сила, равная весу вытесненного пузырем воздуха при атмосферном давлении p_0 , больше веса азота, находящегося внутри пузыря под давлением $p_0 + \Delta p$. По уравнению состояния газа

$$\frac{\mathbf{M}_{_{\mathrm{B}}}p_{_{0}}\pi d^{^{3}}}{6RT}\geq\frac{\mathbf{M}_{_{\mathrm{A}}}\big(p_{_{0}}+\Delta p\big)\pi d^{^{3}}}{6RT},$$

откуда находим

$$d \ge \frac{8\sigma M_{a}}{p_{0}(M_{B} - M_{a})} \approx 10^{-4} M.$$

Задача 3. Батискаф представляет собой шар радиусом r = 2 м. При испытаниях в море в нижней части батискафа образовалась течь, и он затонул, а в его верхней части образовалась воздушная прослойка в виде шарового сегмента толщиной h = 1 м. Чему равна глубина моря Н, на которой затонул батискаф? Какая масса воздуха понадобится для того, чтобы вытеснить из батискафа всю воду? Начальное (атмосферное) давление воздуха в батискафе равно давлению, которое создает слой воды толщиной $H_0 = 10$ м. Указание: объем шарового сегмента толщиной h равен ΔV = $=\pi h^2(3r-h)/3$.

Свободная поверхность воды внутри батискафа горизонтальна. Давление вблизи нее, равное давлению воздуха в батискафе, меньше давления в нижней части батискафа (точка A на рисунке 1) на величину $\rho g(2r-h)$, где $\rho = 10^3$ кг/м³ – плотность воды. В свою очередь, давление в точке A (дно



Рис. 1

водоема) складывается из атмосферного давления и давления слоя воды толщиной *H*. Чтобы найти глубину водоема, необходимо для воздуха, находящегося внутри батискафа (его масса по условию не изменилась), записать закон Бойля – Мариотта:

$$\begin{split} \rho g \Big(H_0 + H - \big(2r - h \big) \Big) \cdot \Delta V = \\ &= \rho g H_0 \cdot \frac{4}{3} \, \pi r^3 \, . \end{split}$$

По условию, h=r/2, поэтому окончательно находим

$$H = \frac{27}{5}H_0 + \frac{3}{2}r = 57$$
 M.

Чтобы найти массу воздуха, необходимую для вытеснения из батискафа воды, учтем, что в конце, когда воздух заполняет весь объем батискафа, его давление превышает атмосферное на ρgH . Из уравнения состояния нахо-

дим искомую массу воздуха:

$$m = \frac{{\rm Mp}gH \cdot 4\pi r^3 \big/ 3}{RT} \approx 225 \ {\rm Kr},$$

где $M=29\ r/моль-молярная масса воздуха, <math>T=290\ K-$ его температура. Можно отметить, что в стандартном баллоне объемом 40 литров под давлением 200 атмосфер при комнатной температуре содержится приблизительно 10 кг воздуха.

Задача 4. Свая в виде двух соосных цилиндров забита в грунт дна водоема глубиной Н (рис.2). Какая сила действует на сваю со стороны воды?

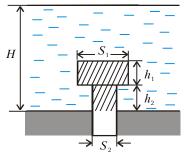


Рис. 2

Сечение верхнего цилиндра S_1 , его высота h_1 , сечение нижнего цилиндра S_2 , высота его части, находящейся в воде, h_2 .

Силы давления воды на боковые поверхности сваи компенсируют друг друга. Выталкивающая сила, действующая на нижнюю часть верхнего цилиндра сваи сечением S_1-S_2 , равна $\rho g (H-h_2)(S_1-S_2)$, где ρ — плотность воды. Сила, прижимающая сваю к грунту, действует на верхнее основание сваи сечением S_1 и равна $\rho g (H-h_1-h_2)S_1$. Результирующая сила равна

$$F = \rho g (h_1 S_1 + h_2 S_2) - \rho g H S_2.$$

Как видно, структура ответа простая: от обычной выталкивающей силы, найденной по закону Архимеда (соответствующий объем сваи на рисунке заштрихован), отнимается сила давления воды на нижнее основание сваи, как бы находящееся на уровне дна водоема. В зависимости от соотношения между h_1 , h_2 , S_1 , S_2 , H результирующая сила может быть как выталкивающей, так и прижимающей сваю ко дну водоема. В приведенных формулах отсутствует также атмосферное давление. Вопрос о том, проникает ли воздух через грунт и тем самым передает свое давление на нижнее основание сваи, забитой в грунт, мы оставляем на суд

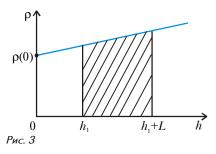
Задача 5. В стратифицированной жидкости плотность увеличивается с глубиной h по линейному закону $\rho(h) = \rho(0)(1 + \alpha h)$, $r \neq 0$ 0 – $u \neq 0$ 0.

тная плотность на поверхности. Для измерения константы α в жидкость на нити, прикрепленной к динамометру, опускают цилиндрическое тело длиной L и сечением S. Когда тело перемещается по вертикали на H, оставаясь целиком погруженным в жидкость, показания динамометра изменяются на ΔF . Чему равна константа α ?

Воспользуемся законом Архимеда и найдем разность выталкивающих сил при перемещении тела по вертикали на H. Очевидно, что если тело опускается, выталкивающая сила увеличивается, а показания динамометра, равные разности веса тела и силы Архимеда, уменьшаются. Пусть в начале верхняя грань цилиндра находится на глубине h_1 , нижняя на глубине $h_1 + L$, а в конце — верхняя на глубине $h_1 + H$, нижняя на глубине $h_1 + H$. Так как плотность жидкости меняется по линейному закону, вес воды, вытесненной телом в начале, пропорционален площади трапеции, заштрихованной на рисунке 3:

$$F_1 = gSL \frac{\rho(h_1) + \rho(h_1 + L)}{2}.$$

Аналогично, вес воды, вытесненной



телом в конце, равен

$$F_2 = gSL\frac{\rho\big(h_1+H\big)+\rho\big(h_1+H+L\big)}{2}.$$

При этом разность показаний динамометра составляет

$$\Delta F = F_2 - F_1 = gSL\rho(0)\alpha H,$$

откуда и находим константу а:

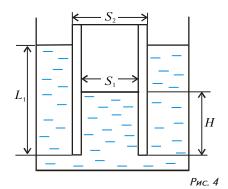
$$\alpha = \frac{\Delta F}{gSL\rho(0)H}.$$

Эту константу можно найти и из разности давлений на верхнее и нижнее основания цилиндра длиной L при его перемещении по вертикали на H (убедитесь в этом самостоятельно).

Задача 6. Трубка, запаянная с одного конца, опускается в жидкость сначала открытым концом вниз, а затем вверх и плавает, находясь в вертикальном положении. Длина погруженной в жидкость части трубки в первом случае на $\Delta L = 5$ см больше,

чем во втором. Найдите высоту H слоя жидкости, зашедшей в трубку в первом случае. Отношение внутреннего сечения трубки S_1 к внешнему S_2 равно 0.5.

Сила тяжести трубки остается неизменной, поэтому и выталкивающая сила в обоих случаях одна и та же. В первом



случае (рис.4), по закону Архимеда, она равна $\rho g L_1 S_2 - \rho g H S_1$, во втором $\rho g L_2 S_2$, где ρ — плотность воды. Приравняв эти силы, получим

$$H = \left(L_1 - L_2\right) \frac{S_2}{S_1} = \Delta L \frac{S_2}{S_1} = 10 \text{ cm}.$$

Приведем второй вариант решения—с использованием закона Паскаля, хотя в данном примере он и более громоздкий. В первом случае сила тяжести трубки mg и сила атмосферного давления p_0 на дно сечением S_2 уравновешены силой давления воздуха, находящегося внутри трубки при давлении p_1 , на внутреннюю поверхность дна S_1 и силой давления воздуха и воды на поверхность боковых стенок пробирки площадью $S_2 - S_1$:

$$mg + p_0 S_2 = p_1 S_1 + (p_0 + \rho g L_1)(S_2 - S_1).$$

При этом имеет место очевидное равенство

$$p_1 = p_0 + \rho g (L_1 - H).$$

Во втором случае сила тяжести трубки уравновешена силой давления воды на дно сечением S_2 :

$$mg = \rho g L_2 S_2$$
.

Силы давления атмосферы на поверхность трубки в этом случае скомпенсированы. Из приведенных равенств находим искомую высоту H.

Задача 7. На дне лунки кубической формы размером $10 \times 10 \times 10$ см лежит шар, диаметр которого немного меньше 10 см. В лунку наливают воду плотностью $\rho = 1$ г/см³ до тех пор, пока шар не начинает плавать, касаясь дна лунки. После этого в лунку долили еще m = 250 г воды так, что лунка оказалась заполненной водой до

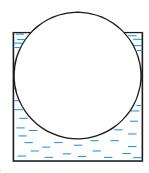


Рис. 5

верха (рис.5). Какую массу воды налили в лунку вначале? Чему равна плотность материала шара? Указание: объем шарового сегмента высотой h равен $\Delta V = \pi h^2 (3d/2 - h)/3$, где d-диаметр шара.

По условию, сначала шар касается дна, а затем плавает в лунке, заполненной водой. Очевидно, что он всплывает при этом на высоту $h=m/(\rho d^2)=2,5$ см = d/4. Значит, именно такова высота части шара объемом ΔV , находящейся над водой. Плотность материала шара $\rho_{\rm m}$ определим из закона Архимеда:

$$\rho\left(\frac{\pi d^3}{6} - \Delta V\right) = \rho_{III} \frac{\pi d^3}{6},$$

откуда

$$\rho_{III} = \rho \left(1 - \frac{2}{d^3} h^2 \left(\frac{3}{2} d - h \right) \right) =$$

$$= \frac{27}{32} \rho = 0.84 \text{ r/cm}^3.$$

Далее, когда шар плавает в лунке, заполненной водой, в ней находится объем воды, равный $d^3 - \left(\pi d^3 / 6 - \Delta V\right)$, поэтому масса воды, налитая в лунку вначале, равна

$$m_0 = \rho \left(d^3 - \left(\frac{\pi d^3}{6} - \Delta V \right) \right) - m =$$

$$= \rho \left(d^3 - \frac{27}{32} \frac{\pi d^3}{6} \right) - m = 310 \text{ r.}$$

Задача 8. В сосуд с водой (боковые стенки сосуда вертикальны) опустили кусок льда, в который был вморожен осколок стекла. В результате уровень воды в сосуде поднялся на $h_1 = 11$ мм, а лед стал плавать, целиком погрузившись в воду. На сколько опустится уровень воды в сосуде за время таяния льда? Плотность стекла $\rho_c = 2,0$ г/см³, воды $\rho = 1$ г/см³, льда $\rho_\pi = 0,9$ г/см³.

Пусть объем стекла $V_{\rm c}$, льда $V_{\rm n}$, а сечение сосуда S. Увеличение уровня воды в сосуде в начале равно $h_{\rm l}$ =

 $=(V_{\rm c}+V_{_{\rm J}})/S$. Когда лед растает, вода, получившаяся из него, займет объем $V=V_{_{\rm J}}\rho_{_{\rm J}}/\rho$. Следовательно, в конце увеличение уровня воды в сосуде будет равно $h_2=(V_{\rm c}+V)/S$, а искомое понижение составит $\Delta h=h_1-h_2$. Связь между объемом льда и стекла найдем из условия плавания:

$$\rho(V_{\pi} + V_{c}) = \rho_{c}V_{c} + \rho_{\pi}V_{\pi},$$

откуда

$$V_{\rm c} = V_{_{\rm I}} \frac{\rho - \rho_{_{\rm I}}}{\rho_{_{\rm c}} - \rho} \,. \label{eq:Vc}$$

Подставив это соотношение в формулы для h_1 и h_2 , найдем окончательно Δh :

$$\Delta h = h_1 \frac{\rho - \rho_{\scriptscriptstyle B}}{\rho} \frac{\rho_{\scriptscriptstyle C} - \rho}{\rho_{\scriptscriptstyle C} - \rho_{\scriptscriptstyle B}} = 1 \text{ MM}.$$

Задача 9. Тройник с двумя открытыми в атмосферу и одной закрытой вертикальными трубками целиком заполнен водой. Когда тройник стали двигать по горизонтали (в плоскости рисунка 6) с некоторым ускорением, из него вылилась 1/8 часть всей массы содержавшейся в нем воды. Чему равно давление в нижней части (точка А) закрытой трубки во время движения с ускорением? Внутренние сечения всех трубок одинаковы, длины трубок L.

При движении с ускорением a вправо вода из правого открытого в атмосферу колена перетекает в левое колено и оттуда выливается наружу. По условию, вылилась половина воды, находящейся в правом колене (длина всех трубок 4L, вылилась 1/8 часть всей массы воды). Запишем уравнения движения для воды, находящейся в какихлибо двух горизонтальных участках трубки. Для участка BC имеем

$$(p_B - p_C)S = a\rho S \frac{L}{2},$$

где $p_B = \rho g L + p_0$ — давление в точке B, p_C — давление в точке C, p_0 — атмосферное давление, S — сечение трубки, ρ — плотность воды. На участке BD жидкость движется под действием разности давлений $\rho g L/2$, так как атмосферные давления в точках B и D скомпенсированы:

$$\rho g \frac{L}{2} S = a \rho S L.$$

Разделив эти два уравнения друг на друга, находим

$$p_C = \frac{3}{4} \rho g L + p_0.$$

Давление в искомой точке A отличается от найденной величины на ρgL , поэтому давление в нижней части закрытой трубки равно

$$p_A = \frac{7}{4} \rho g L + p_0.$$

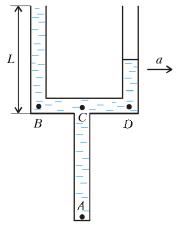


Рис. 6

Упражнения

- 1. Оцените массу кислорода, содержащегося в атмосфере Земли. Температура воздуха у поверхности $T=290~{\rm K}$, радиус Земли $r=6370~{\rm km}$. Масса кислорода, содержащегося в одном литре воздуха у поверхности Земли, равна $\rho=0.26~{\rm r/n}$, процентное содержание кислорода (по массе) в атмосфере постоянное, толщина атмосферы много меньше радиуса планеты. Слой какой толщины занял бы кислород у поверхности, если бы его температура и давление были равны соответствующим значениям температуры и давления у поверхности Земли?
- **2.** Герметично закрытая с одного конца трубка опускается в воду закрытым концом кверху и плавает в вертикальном положении, что обеспечивается незначительными внешними боковыми усилиями. Длина части трубки, погруженной в воду, $H=1,75\,\mathrm{m}$, длина всей трубки $L=2\,\mathrm{m}$. Найдите высоту слоя воды, зашедшей в трубку. Атмосферное давление принять равным давлению, слоя воды высотой $H_0=10,5\,\mathrm{m}$.
- **3.** Мыльный пузырь надувается воздухом, температура которого выше комнатной. При диаметре пузыря d=0,3 мм он начинает всплывать (в комнате). На сколько процентов температура воздуха в пузыре выше комнатной? Поверхностное натяжение мыльного раствора $\sigma=40$ мН/м. Атмосферное давление $p_0=10^5$ Па. Массой пленки пренебречь.
- 4. В лунку кубической формы размером $10 \times 10 \times 10$ см, целиком заполненную водой, опускают цилиндрическое тело (ось цилиндра вертикальна). В результате часть воды из лунки выливается, а тело начинает плавать в ней. После этого из лунки отлили еще m=250 г воды так, что тело стало плавать, касаясь дна лунки. Какая масса воды осталась в лунке? Чему равна плотность материала цилиндра? Диаметр цилиндра d немного меньше 10 см, высота цилиндра равна его диаметру, плотность воды $\rho=1$ г/см 3 .