Доказательство теоремы Крейна-Мильмана сохраняется в конечномерном случае. Его надо проводить по индукции. Для плоскости теорема доказана. Пусть она доказана для (n-1)-мерных выпуклых множеств; докажем ее для n-мерных множеств (в n-мерном пространстве). Рассмотрим тогда любую гиперплоскость \boldsymbol{H}_0 в этом пространстве, найдем на $m{A}$ самую дальнюю от $m{H}_0$ точку A_0 и проведем через нее гиперплоскость $oldsymbol{H}_0'$, параллельную $oldsymbol{H}_0$. Гиперплоскость H_0' пересекается с A по выпуклому множеству размерности $\leq n-1$ (ибо сама гиперплоскость имеет размерность n-1), и, по предположению индукции, в этом пересечении есть крайняя точка, которая будет крайней и для самого множества A. Дальнейшую часть доказательства читатель может восполнить самостоятельно. (В бесконечномерном случае применяется особая индукция, а геометрическая суть остается прежней.)

Теорема Каратеодори также обобщается на n-мерное пространство: каждая точка, принадлежащая выпуклой оболочке конечной системы точек, расположенных в n-мерном пространстве, принадлежит выпуклой оболочке системы из не более чем n+1 точки системы.

Доказательство этого результата проводится индукцией по размерности. Можно посоветовать читателю продумать его в трехмерном пространстве.

То же самое можно посоветовать читателю и относительно теоремы Радона (в которой в n-мерном пространстве надо 4 заменить на n+2). Но если до сих пор геометрические доказательства были проще или сравнимы с аналитическими, то по отношению к теореме Радона это не так. Обобщение того рассуждения, с помощью которого мы доказали плоскую теорему Радона, достаточно громоздко, в то время как алгебраическое доказательство почти тривиально (см. [2]).

В теореме Хелли в n-мерном случае число 3 надо заменить на n+1, а доказательство сохраняется.

Наконец, формулировка и доказательство теоремы Фенхеля—Моро сохраняется аж в гильбертовом случае. Надо только слово «прямая» заменять на «гиперплоскость», «вертикальная прямая» на «вертикальная гиперплоскость», а «точка C» на «множество C», являющееся пересечением гиперплоскостей H_0 и H_1 . Через C и точку B_1' проводится единственная гиперплоскость, являющаяся графиком аффинной функции. Так что все элементы рассуждения сохраняются.

3. Мы могли бы выше рассматривать не только евклидову плоскость, но и плоскость Лобачевского.

Когда-то исследования Лобачевского были приняты в штыки, над ним издевались, объявляя его геометрию ахинеей (таким человеком был, например, Н.Г.Чернышевский). Но сейчас для любого читателя «Кванта» объяснить, что существует объект, в котором имеются аналоги точек, прямых и полуплоскостей, есть расстояния, но нет параллельности, совсем нетрудно.

Таким объектом является «полуплоскость Пуанкаре» – верхняя полуплоскость (без ограничивающей ее горизон-

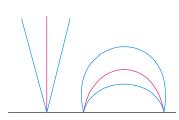


Рис.14. Прямые Лобачевского (красные линии) и эквидистанты (синие линии)

тальной прямой). Точки полуплоскости – это точки геометрии Лобачевского, а аналоги прямых (прямые Лобачевского) — это либо вертикальные лучи, либо полуокружности, центр которых лежит на горизонтальной прямой, ограничивающей полуплоскость (рис.15).

Упражнение 7. Докажите, что через две различные

точки полуплоскости Пуанкаре проходит единственная прямая Лобачевского.

Прямая Лобачевского делит полуплоскость на две части, являющиеся аналогами полуплоскостей на евклидовой плоскости; точка на прямой Лобачевского разбивает ее на два луча, а две точки на прямой Лобачевского стягивает дуга, которая является аналогом отрезка. Так что имеется полная аналогия с теми свойствами, которые выше были отмечены на нашей евклидовой плоскости. А значит, на полуплоскости Пуанкаре можно определить понятие выпуклой фигуры — фигуры, которая вместе с двумя точками содержит весь «отрезок», их стягивающий.

Между прямыми Лобачевского естественным образом определяется угол, как угол между касательными к окружностям – прямым Лобачевского – в точке их пересечения (или угол между вертикальной прямой и касательной к пересекающей ее окружности – прямой Лобачевского).

Для того чтобы ввести расстояние на полуплоскости Пуанкаре и определить движения на этой полуплоскости, нужны комплексные числа. Приведем нужные формулы для полноты картины. Полуплоскость Пуанкаре состоит из точек z=x+iy комплексной плоскости, для которых мнимая часть ${\rm Im}\ z=y>0$. Расстояние между точками z_1 и z_2 определяется по формуле

$$\rho\left(z_{1};\,z_{2}\right)=k\ln\frac{1+\left|\frac{z_{2}-z_{1}}{z_{2}-\overline{z}_{1}}\right|}{1-\left|\frac{z_{2}-z_{1}}{z_{2}-\overline{z}_{1}}\right|},\;k>0,$$
 а движения – это преобразования вида $z\to\frac{az+b}{cz+d}$, где $a,\,b,$

а движения — это преобразования вида $z \to \frac{az+b}{cz+d}$, где a,b,c,d — действительные числа, причем ad-bc=1 (здесь $\overline{z}=x-iy$.

Но собственно для теории выпуклости на плоскости Лобачевского важны лишь два факта, связанных с понятием расстояния. Множеством точек (или, как говорят еще, «геометрическим местом точек»), равноудаленных от прямой на евклидовой плоскости, являются параллельные прямые. А на плоскости Лобачевского параллельных прямых много, но множеством точек, равноудаленных от прямой Лобачевского, не будет ни одна из них. Такими множествами (эквидистантами — множествами равных расстояний) будут на полуплоскости Пуанкаре дуги окружностей, проходящие через те две точки, в которых прямая Лобачевского пересекается с горизонтальной прямой (или лучи, исходящие из той же точки, что и вертикальная прямая).

Множеством точек, равноудаленных от точки на полуплоскости Пуанкаре, будет (как и на евклидовой плоскости) окружность, правда, центр ее не совпадает с самой точкой.

Этих сведений достаточно для того, чтобы читатель самостоятельно, без поводыря, смог бродить по выпуклому миру плоскости Лобачевского. Он может, например, сделать попытку самостоятельно построить там теорию выпуклых множеств.

В качестве упражнения попробуйте сформулировать и доказать аналоги всех теорем плоской выпуклой геометрии, о которых рассказывалось выше (т. е. теорем о строгой отделимости, Минковского, Крейна-Мильмана, Каратеодори, Радона и Хелли), для геометрии Лобачевского в ее модели на полуплоскости Пуанкаре.

Литература

- 1. *Болтянский В. Г.*, *Яглом И. М.* Выпуклые фигуры. М. Л.: ГИТТЛ, 1951.
- 2. *Магарил-Ильяев Г.Г.*, *Тихомиров В.М.* Выпуклый анализ и его приложения. М.: УРСС, 2003.