МАТЕМАТИЧЕСКИЙ КРУЖОК

)днозначно ли

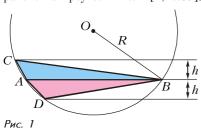
А.ЖУКОВ. И.АКУЛИЧ

Ы БУДЕМ ЗАНИМАТЬСЯ ИССЛЕДОВАНИЕМ ЗАДАЧ, в которых треугольник требуется восстановить по некоторым заданным его элементам - прежде всего по трем высотам, медианам или биссектрисам.

Вопрос, вынесенный в заголовок, на самом деле можно «расщепить» на два вопроса:

- 1) определяется ли треугольник заданными элементами (т.е. существует ли хотя бы одно решение рассматриваемой задачи):
- 2) если решение задачи существует, то единственно ли оно (однозначно ли определяется треугольник)?

Мы знаем, что треугольник однозначно задается тремя своими сторонами (это так называемый третий признак равенства треугольников [1, с.39]). Однако, произвольно



задавая длины сторон, мы можем и не получить треугольник (попробуйте построить треугольник со сторонами 1, 2 и 5 сантиметров). Не по всяким своим элементам треугольник восстанавли-

вается однозначно. Например, задав сторону AB, высоту h, проведенную к этой стороне, и радиус R описанной около треугольника окружности, мы можем получить два различных треугольника ACB и ADB (рис.1).

Однозначно ли определяется треугольник своими высотами?

Обозначим $a,\ b,\ c$ длины сторон треугольника, $\ h_{\!\scriptscriptstyle a}$, $\ h_{\!\scriptscriptstyle b}$, $\ h_{\!\scriptscriptstyle c}$ – длины высот, опущенных на соответственные стороны, S— площадь треугольника. Для удобства введем также обозначения $\eta_a = \frac{1}{h_a}$, $\eta_b = \frac{1}{h_b}$, $\eta_c = \frac{1}{h_c}$. Поскольку

чения
$$\eta_a = \frac{1}{h_a}$$
, $\eta_b = \frac{1}{h_b}$, $\eta_c = \frac{1}{h_c}$. Поскольку

$$S = \frac{ah_a}{2} = \frac{bh_b}{2} = \frac{ch_c}{2} \,, \tag{1}$$

TO

$$a:b:c=\eta_a:\eta_b:\eta_c. \tag{2}$$

Последнее соотношение позволяет сделать вывод: треугольник с высотами h_a , h_b , h_c существует, если из отрезков длины η_a , η_b , η_c можно составить треугольник. Иными словами, величины η_a , η_b , η_c , так же, как и длины сторон а, b, c, должны удовлетворять неравенству треугольника.

Упражнения

1. Докажите, что если справедливо соотношение (2), то совокупность неравенств

$$a + b > c,$$

$$b + c > a,$$

$$c + a > b$$
(3)

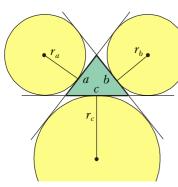
эквивалентна совокупности неравенств

$$\begin{split} & \eta_a + \eta_b > \eta_c, \\ & \eta_b + \eta_c > \eta_a, \\ & \eta_c + \eta_a > \eta_b. \end{split} \tag{4}$$

2. Покажите, что

$$S = ((\eta_a + \eta_b + \eta_c)(\eta_a + \eta_b - \eta_c)(\eta_b + \eta_c - \eta_a)(\eta_c + \eta_a - \eta_b))^{-1/2}. (5)$$

Итак, если длины высот h_a , h_b , h_c удовлетворяют неравенствам (4), то площадь S треугольника вычисляется одно-



значно по формуле (5). Но в этом случае равенства (1) позволяют однозначно вычислить и длины сторон треугольника a, b, c.

Упражнения

- **3.** Однозначно ли определяют треугольник радиусы r_a , r_b , r_c вневписанных окружностей (рис.2)?
- **4.** Постройте треугольник по трем высотам h_a , h , h .

Рис. 2

Однозначно ли определяется треугольник своими медианами?

В школьном курсе геометрии (см., например, [1], с.212, задача 788) доказывается, что из медиан произвольного треугольника можно составить треугольник. Следовательно, если треугольник с заданными длинами медиан m_a , m_b , m_c существует, то величины m_a , m_b , m_c должны удовлетворять неравенствам

$$m_a + m_b > m_c,$$

$$m_b + m_c > m_a,$$

$$m_c + m_a > m_b.$$
(6)

Для исследования вопроса об однозначности восстановления треугольника по его трем медианам удобно воспользоваться известными соотношениями, связывающими длины медиан треугольника с его сторонами a, b, c:

$$2m_a^2 = 2(b^2 + c^2) - a^2,$$

$$2m_b^2 = 2(c^2 + a^2) - b^2,$$

$$2m_c^2 = 2(a^2 + b^2) - c^2.$$
(7)

Упражнения

- **5.** Докажите, что если длины медиан m_a , m_b , m_c треугольника удовлетворяют неравенствам (6), то стороны этого треугольника a, b, c в силу равенств (7) определяются однозначно.
 - **6.** Постройте треугольник по трем медианам $\, m_a \, , \, \, m_b \, , \, \, m_c \, . \,$

Однозначно ли определяется треугольник своими биссектрисами?

Сначала предположим, что треугольник с некоторыми заданными длинами трех биссектрис существует. В этом случае докажем, что треугольник своими биссектрисами определяется однозначно. А именно, докажем следующий признак равенства треугольников.

Теорема. Если три биссектрисы одного треугольника соответственно равны трем биссектрисам другого треугольника, то эти треугольники равны.

Доказательство. Пусть треугольники Δ_1 и Δ_2 имеют соответственно равные биссектрисы. Назовем соответственными сторонами этих двух треугольников стороны, к которым проведены равные биссектрисы. Достаточно рассмотреть два случая:

- 1) все стороны одного треугольника не меньше соответственных сторон другого треугольника;
- 2) ровно одна сторона одного треугольника меньше соответственной стороны другого треугольника.

Рассмотрим случай 1).

Если все соответственные стороны треугольников равны, то эти треугольники равны по третьему признаку равенства треугольников.

Предположим, что у треугольников имеются неравные соответственные стороны. Во-первых, заметим, что треугольники не могут быть подобными с коэффициентом подобия, отличным от 1. В противном случае биссектрисы одного из треугольников были бы больше соответствующих биссектрис другого. Следовательно, у треугольников имеются неравные углы. Не умаляя общности, будем считать, что стороны треугольника Δ_1 не меньше соответственных сторон треугольника Δ_2 . Поскольку у треугольников Δ_1 и Δ_2 имеются неравные углы, то в треугольнике Δ_1 найдется угол ϕ_1 , меньший соответственного угла ϕ_2 в треугольнике Δ_2 . Если угол ϕ_1 в треугольнике Δ_1 образован сторонами ϕ_2 , ϕ_2 , то для длин биссектрис ϕ_1 , ϕ_2 этих углов имеем

$$l_{1} = \frac{2\cos\frac{\varphi_{1}}{2}}{\frac{1}{p_{1}} + \frac{1}{q_{1}}}, \quad l_{2} = \frac{2\cos\frac{\varphi_{2}}{2}}{\frac{1}{p_{2}} + \frac{1}{q_{2}}}.$$
 (8)

Здесь мы воспользовались формулой

$$l = \frac{2\cos\frac{\varphi}{2}}{\frac{1}{p} + \frac{1}{q}},\tag{9}$$

связывающей длину биссектрисы l со значением угла ϕ , в котором она проведена, а также с длинами p и q образующих этот угол сторон треугольника.

Упражнение 7. Выведите формулу (9).

Вернемся к соотношениям (8). Так как $\varphi_2 > \varphi_1$, $p_2 \le p_1$, $q_2 \le q_1$, то $l_2 < l_1$ – противоречие.

Итак, в рассматриваемом случае треугольники могут иметь только равные соответственные стороны.

Рассмотрим случай 2).

Без ограничения общности можно считать, что стороны a_1 , b_1 , c_1 треугольника Δ_1 соответственны сторонам a_2 , b_2 , c_2 треугольника Δ_2 , причем

$$a_1 < a_2, b_1 \ge b_2, c_1 \ge c_2.$$
 (10)

Воспользовавшись еще одной известной формулой, связывающей длину биссектрисы с длинами сторон треугольника, имеем

$$l_{a_1}^2 = b_1 c_1 \left(1 - \frac{a_1^2}{\left(b_1 + c_1 \right)^2} \right),$$

$$l_{a_2}^2 = b_2 c_2 \left(1 - \frac{a_2^2}{\left(b_2 + c_2 \right)^2} \right).$$
(11)

С учетом неравенств (10), из (11) следует $l_{a_2}^2 < l_{a_1}^2$ — противоречие.

Признак равенства треугольников по трем биссектрисам доказан.

Замечание. Выше мы уже доказали другие признаки равенства треугольников. Подытоживая все результаты вместе, заключаем, что треугольники равны, если они имеют

- равные высоты,
- равные медианы,
- равные биссектрисы.

Существует ли треугольник с заданными биссектрисами?

Пока остается неясным следующий вопрос. Существует ли треугольник, длины биссектрис которого равны трем наперед заданным положительным числам l_a , l_b , l_c ? Должны ли мы на эти числа накладывать какие-либо ограничения, как это было в случае с высотами и медианами? Оказывается, для любых положительных чисел l_a , l_b , l_c такой треугольник существует.

Эта задача имеет длинную историю. По всей видимости, одна из первых ее формулировок принадлежит французскому математику Анри Брокару (1845—1922), хотя нет сомнений, что задача занимала умы математиков и раньше. Брокар опубликовал свою формулировку в 1875 году. В 1994 году румынские математики Петру Миронеску и Лаурентин Панаитопол в журнале «Mathematical Monthly» привели решение, основанное на теореме Брауэра о неподвижной точке.

Ниже мы приведем свое решение, в идейном плане доступное старшеклассникам, хотя и требующее для полного обоснования некоторых фактов математического анализа. ¹

Теорема. Для любых положительных чисел l_a , l_b , l_c существует единственный треугольник с биссектрисами, длины которых равны l_a , l_b , l_c .

Доказательство. Напомним, что биссектрисы l_a , l_b , l_c и стороны a, b, c любого треугольника связаны соотношениями

$$l_{a}^{2} = bc \left(1 - \frac{a^{2}}{(b+c)^{2}} \right),$$

$$l_{b}^{2} = ac \left(1 - \frac{b^{2}}{(a+c)^{2}} \right),$$

$$l_{c}^{2} = ab \left(1 - \frac{c^{2}}{(a+b)^{2}} \right).$$
(12)

Введя вспомогательные переменные ξ, η, ζ, p :

$$p = a + b + c,$$

$$\xi = \frac{a}{p},$$

$$\eta = \frac{b}{p},$$

$$\zeta = \frac{c}{p},$$
(13)

равенства (12) запишем в таком виде:

$$\frac{l_a^2 (1-\xi)^2 \xi}{1-2\xi} = p^2 \eta \zeta \xi,
\frac{l_b^2 (1-\eta)^2 \eta}{1-2\eta} = p^2 \eta \zeta \xi,
\frac{l_c^2 (1-\zeta)^2 \zeta}{1-2\zeta} = p^2 \eta \zeta \xi.$$
(14)

Заметим, что вещественная функция $\varphi = \frac{\left(1-x\right)^2 x}{1-2x}$ на интервале $x \in \left(0; \frac{1}{2}\right)$ — непрерывная и монотонно возрастающая. Последний факт следует из того, что ее производная

$$\varphi'(x) = \frac{(1-x)(4x^2 - 3x + 1)}{(1-2x)^2}$$

на указанном интервале положительна. Значит, обратная к ϕ функция f также непрерывная и возрастающая.

Теперь равенства (14) можно переписать так:

$$\xi = f\left(\frac{t}{l_a^2}\right),$$

$$\eta = f\left(\frac{t}{l_b^2}\right),$$

$$\zeta = f\left(\frac{t}{l_a^2}\right),$$
(15)

где $t = p^2 \eta \zeta \xi$. Поскольку

$$\xi + \eta + \zeta = \frac{a}{p} + \frac{b}{p} + \frac{c}{p} = \frac{a+b+c}{p} = 1$$
,

получаем уравнение

$$f\left(\frac{t}{l_a^2}\right) + f\left(\frac{t}{l_b^2}\right) + f\left(\frac{t}{l_c^2}\right) = 1.$$

В его левой части стоит возрастающая функция, при $t \to 0$ стремящаяся к 0, а при $t \to +\infty$ — к $\frac{3}{2}$. Значит, решение уравнения $t=t_0$ существует и единственно.

Зная $t=t_0$, находим ξ_0 , η_0 и ζ_0 из (15), затем находим p_0 из соотношения $p=\sqrt{\frac{t}{\eta\zeta\xi}}$ и, наконец, получаем $a_0=\xi_0p_0$, $b_0=\eta_0p_0$ и $c_0=\zeta_0p_0$.

Таким образом, по длинам биссектрис l_a, l_b, l_c длины сторон $a,\ b,\ c$ треугольника определяются однозначно. Теорема доказана.

В этом месте читатель не найдет традиционного упражнения: «постройте треугольник по трем его биссектрисам». Располагая лишь классическим набором инструментов — линейкой без делений и циркулем, выполнить такое построение невозможно. Это доказал в 1896 году П.Барбарин. С доказательством этого факта можно познакомиться в статье Ю.И. Манина [2].

Литература

- 1. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7–9. М.: Просвещение, 2001.
- 2. *Манин Ю.И.* О разрешимости задач на построение с помощью циркуля и линейки // Энциклопедия элементарной математики. Т. IV. М.: Наука, 1961. C.205–227.

¹ Несколько более длинные решения редакция получила от Ю.Томчука и Н.Осипова.