6. –1; 2/7. Указание. Выполните замену $t = \sqrt[3]{\frac{2}{x} - 6}$.

Вариант 17

1.
$$\left(-\frac{\sqrt{3}}{2}; -\frac{1}{2}\right] \cup \left[3; 2\sqrt{3}\right)$$
. 2. $\frac{3\pi}{2}$, 2π , $2\pi - \arccos \frac{2}{5}$.

3. $\stackrel{?}{4}$ km/ч, $\stackrel{?}{8}$ km/ч, $\stackrel{?}{12}$ km/ч.

4. $\left(0; \frac{1}{3}\right) \cup \left[3; 3^{\sqrt{13}}\right]$. Указание. После замены $t = \log_3 x$ неравенство приводится к виду

$$(1+t)\sqrt{\frac{t-1}{3(1+t)}} \le 2.$$

5. $\angle BOC = 112.5^{\circ}$.

6. $\{-1\} \cup \left[-\frac{1}{2}; 0\right] \cup \left[0; \frac{1}{2}\right] \cup \{1\}$. Преобразуем данную систему уравнений:

$$\begin{cases} ax + y = a, \\ ax^3 + y^3 = a \end{cases} \Leftrightarrow \begin{cases} y = a(1 - x), \\ a(x^3 - 1) + a^3(1 - x)^3 = 0 \end{cases} \Leftrightarrow$$
$$\Leftrightarrow \begin{cases} y = a(1 - x), \\ a(x - 1)(x^2 + x + 1 - a^2(x - 1)^2) = 0. \end{cases}$$

Второе уравнение последней системы приводит к рассмотрению трех случаев.

а) a=0. Тогда система имеет бесконечно много решений вида (t;0), где $t\in \mathbf{R}$. Таким образом, значение a=0 не является искомым. 6) x=1. Очевидно, система имеет решение (1;0) при любом a. в) Третий вариант сводится к системе

$$\begin{cases} y = a(1-x), \\ x^2 + x + 1 - a^2(x-1)^2 = 0 \end{cases} \Leftrightarrow \begin{cases} y = a(1-x), \\ (a^2 - 1)x^2 - (2a^2 + 1)x + a^2 - 1 = 0. \end{cases}$$

Заметим, что x = 1 не удовлетворяет второму уравнению ни при каком значении параметра a. Поэтому искомыми являются те и только те значения a, при которых система в) имеет не более одного решения.

У этой системы уравнений при $a^2=1$ есть единственное решение (0;a). Если же $a^2\neq 1$ ($a\neq 0$), то квадратное уравнение (а с ним и система) имеет не более одного решения при условии, что дискриминант

$$D = (2a^2 + 1)^2 - 4(a^2 - 1)^2 = 3(4a^2 - 1) \le 0,$$

что равносильно $0 < |a| \le \frac{1}{2}$.

7. $(\pi n; \pi n - 1)$, $n \in \mathbf{Z}$. Преобразуем выражение под радикалом:

$$A = 3 + 2x - 2y + 2xy - x^{2} - y^{2} = -(x - y - 1)^{2} + 4.$$

Отсюда с учетом неотрицательности подкоренного выражения имеем $0 \le A \le 4$.

Заметив, что $\cos x \neq 0$, перепишем данное уравнение, переходя к переменной $t=\lg x$:

$$t^{2} - (\sqrt{A} - 2)t + 2 - \sqrt{A} = 0.$$

Это уравнение может иметь решения лишь при условии неотрицательности дискриминанта:

$$(\sqrt{A} - 2)^2 - 4(2 - \sqrt{A}) \ge 0$$
, r.e. $A \ge 4$.

Сравнивая с полученным ранее ограничением, имеем A=4. Тогда

$$\begin{cases} t=0, \\ x-y=1 \end{cases} \Leftrightarrow \begin{cases} x=\pi n, & n\in \mathbb{Z}, \\ y=x-1 \end{cases} \Leftrightarrow \begin{cases} x=\pi n, \\ y=\pi n-1, \end{cases} \quad n\in \mathbb{Z}.$$

ФИЗИКА

Физический факультет

1. На рисунке 22 сплошной линией показано положение сечения цилиндра вертикальной плоскостью, перпендикулярной оси цилиндра, в тот момент времени t, когда доска, лежащая на нем, образует со столом угол α . Пунктирной линией изображено положение указанного сечения по прошествии небольшого промежутка времени Δt . Считая (как обычно это и делается при решении по-

добных задач) цилиндр, стол и доску твердыми телами, можно утверждать, что прямая, проходящая через вершину угла и центр сечения цилиндра, является биссектрисой угла α . Поскольку цилиндр ка-

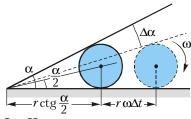


Рис. 22

тится по столу без проскальзывания с угловой скоростью ω и его ось остается параллельной оси вращения доски, ось цилиндра за промежуток времени Δt переместится на расстояние $\Delta s = r_{\omega} \Delta t$, где r — радиус цилиндра, а доска повернется на угол $\Delta \alpha$. Учитывая, что выбранный промежуток времени Δt достаточно мал, можно считать, что угол $\Delta \alpha$ мал и вращение доски в течение этого промежутка времени неотличимо от равномерного. Поэтому, если искомую скорость вращения доски обозначить Ω , то $\Delta \alpha = \Omega \Delta t$. С другой стороны, из геометрии получим

$$r\left(\operatorname{ctg}\frac{\alpha-\Delta\alpha}{2}-\operatorname{ctg}\frac{\alpha}{2}\right)=r\omega\Delta t$$
.

Поскольку ${\rm ctg}\,\alpha - {\rm ctg}\,\beta = \frac{\sin(\beta - \alpha)}{\sin\alpha\sin\beta}$, а синус малого угла равен самому углу (измеренному в радианной мере), искомая угловая скорость равна

$$\Omega = 2\omega \sin^2 \frac{\alpha}{2}$$

2. Будем решать задачу, полагая, что бочка покоится относительно инерциальной системы отсчета, а подъем диска осуществляется столь медленно, что можно пренебречь силами сопротивления движению диска со стороны воды. Когда диск находился на дне бочки, на него действовали сила тяжести, сила реакции дна и сила Архимеда (из-за шероховатости дна). Считая воду несжимаемой и полагая плотность воды равной $\rho_{\rm B}=1~{\rm r/cm}^3$, получим, что равнодействующая сил тяжести и гидростатического давления в этом случае должна быть равна $F_{\rm I}=\pi R^2 h (\rho-\rho_{\rm B})g$, где g — ускорение свободного падения. В силу симметрии диска можно утверждать, что эта сила приложена к центру тяжести диска.

После того как к диску прижали трубку, поршень подняли вверх и диск оторвался от дна бочки, сила реакции дна стала равной нулю, а на участок верхней плоскости диска, ограниченный контуром трубки, стали действовать силы со стороны трубки. Действие же сил гидростатического давления воды на этот участок прекратилось. По условию задачи, вплоть до момента отрыва в трубке под поршнем не должно находиться никакого вещества, поэтому результирующая сил гидростатического давления воды, действующих на диск, когда его