Малая теорема Ферма

В.СЕНДЕРОВ, А.СПИВАК

Напоминание

Малая теорема Ферма гласит: если a – целое число, не делящееся на простое число p, то a^{p-1} – 1 делится на p.

Функция Эйлера $\varphi(n)$ — это количество натуральных чисел от 1 до n, взаимно простых с n.

Функция Кармайкла $\lambda(n)$ — это такое наименьшее натуральное число k, что для всякого целого числа a, взаимно простого с натуральным числом n, разность $a^k - 1$ делится на n.

Число g называют первообразным корнем по модулю n, если для всякого целого a, взаимно простого с n, существует такое натуральное число m, что $g^m \equiv a \pmod{n}$.

Подробно об этих и многих других понятиях и теоремах арифметики можно прочитать в предыдущих частях статьи. Там не было доказано существование первообразного корня по простому модулю. Пришла пора это сделать.

Первообразные корни

Первообразные корни по модулю 11

Число 2 – первообразный корень по модулю 11. Какие еще есть первообразные корни по этому модулю?

Для ответа не нужно перебирать все числа 3, 4, 5, ..., 9, 10 и составлять для каждого из них таблицу. Некоторые степени двойки можно сразу отбросить:

$$(2^{2})^{5} = 2^{10} \equiv 1,$$

$$(2^{4})^{5} = 2^{20} \equiv 1,$$

$$(2^{5})^{2} \equiv 1,$$

$$(2^{6})^{5} \equiv 1,$$

$$(2^{8})^{5} \equiv 1 \pmod{11}.$$

А вот степени двойки $2^1 \equiv 2$, $2^3 \equiv 8$, $2^7 \equiv 7$ и $2^9 \equiv 6$, показатели которых взаимно просты с 10, являются первообразными корнями. (Обдумайте это!)

И вообще, если g – первообразный корень по простому модулю p, то g^s является первообразным корнем в

Окончание. Начало см. в «Кванте» № 1, 3.

том и только том случае, когда s и p-1 взаимно просты.

Упражнения

- 44. Докажите это.
- **45.** Для того чтобы число a было первообразным корнем по простому модулю p, необходимо и достаточно, чтобы a не делилось на p и ни для какого простого делителя q числа p-1 разность $a^{(p-1)/q}-1$ не делилась бы на p. Докажите это.
- **46.** Найдите наименьшее натуральное число, являющееся первообразным корнем по модулю a) 23; 6) 41; в) 257.
- **47.** а) Проверьте, что 2 не является первообразным корнем по модулю 263, а –2 является.
- 6) Пусть $a^3 a$ не делится на 83. Докажите, что ровно одно из чисел a и -a является первообразным корнем по модулю 83.
- **48.** а) Пусть p простое число, $p \equiv 1 \pmod{4}$. Докажите, что число —a является первообразным корнем по модулю p тогда и только тогда, когда само число a первообразный корень по модулю p.
- 6) Пусть p простое число, $p \equiv 3 \pmod{4}$. Докажите, что число a является первообразным корнем по модулю p тогда и только тогда, когда порядок числа -a по модулю p равен (p-1)/2.

Порядки классов вычетов

В таблице 5 для каждого ненулевого остатка $a \pmod{11}$ указан его порядок k.

Как и должно быть, порядки – делители числа 10. Давайте посчитаем, сколько раз в нижней строке

Таблица 5

а	1	2	3	4	5	6	7	8	9	10
k	1	10	5	5	5	10	10	10	5	2

таблицы 5 встречаются числа 1, 2, 5 и 10. Ответы запишем в виде таблицы 6.

Таблица 6

Порядок	1	2	5	10
Встречается	1	1	4	4

Видна закономерность? Если нет, посмотрите на таблицу 7, составленную для p = 13.

Таблица 7

а	1	2	3	4	5	6
k	1	12	3	6	4	12
а	7	8	9	10	11	12
k	12	4	3	6	12	2

В ней порядки – делители числа 12. Посчитаем, сколько раз встречаются в нижней строке таблицы 7 числа 1, 2, 3, 4, 6 и 12 (табл.8).

Таблица 8

Порядок	1	2	3	4	6	12
Встречается	1	1	2	2	2	4

Если вы все еще не догадались, составьте такие таблицы для нескольких других простых чисел p, и рано или поздно увидите, что в нижних строках этих таблиц — значения функции Эйлера: $\varphi(1) = 1$, $\varphi(2) = 1$, $\varphi(3) = 2$, $\varphi(4) = 2$, $\varphi(5) = 4$, $\varphi(6) = 2$, $\varphi(10) = 4$, $\varphi(12) = 4$.

Великий немецкий математик К.Ф.Гаусс (1777—1855) в «Арифметических исследованиях», опубликованных в 1801 году, доказал, что это не случайность, а общий закон.

Теорема 4. Среди p-1 ненулевых классов вычетов по простому модулю p порядок k, где k- делитель числа p-1, имеют ровно $\varphi(k)$ классов вычетов. (В частности, для любого простого числа p существует $\varphi(p-1)$ первообразных корней по модулю p.)

Для доказательства теоремы 4 мы используем теорему Безу и одно интересное свойство функции Эйлера.

Теорема Безу

Для тех, кто знаком с делением многочленов с остатком, теорему Безу¹ можно сформулировать и до-

¹ Этьен Безу (1730–1783) – французский математик.