кратно p. Значит, для чисел k, не кратных p, теорему можно формулировать следующим образом:

Теорема 1. Если целое число k не кратно простому числу p, то k^{p-1} дает остаток 1 при делении на p.

Доказательство. Поскольку остатки от деления на p чисел k, 2k, 3k, ..., (p-1)k — это (с точностью до перестановки) числа 1, 2, 3, ..., p-1, то

$$k\cdot 2k\cdot 3k\cdot\ldots\cdot (p-1)k\equiv 1\cdot 2\cdot 3\cdot\ldots\cdot (p-1)\pmod p\,,$$
откуда

$$k^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$$
.

Сократив на (p-1)!, получим желаемое:

$$k^{p-1} \equiv 1 \pmod{p}.$$

А тот, кто не решил упражнение 4 б) и не знает, почему сравнения можно сокращать (на число, взаимно простое с модулем), пусть рассуждает следующим образом: поскольку произведение $(k^{p-1}-1)\cdot (p-1)!$ кратно p, а число (p-1)! не кратно p, то число $k^{p-1}-1$ кратно простому числу p.

Упражнения

- **18.** Найдите остаток от деления числа 3^{2000} на 43.
- **19.** Если целое число a не кратно 17, то a^8 1 или a^8 + 1 кратно 17. Докажите это.
- **20.** Докажите 910. **20.** Докажите, что $m^{61}n - mn^{61}$ кратно 56786730 при любых целых m и n.
- **21.** Найдите все такие простые числа p, что $5^{p^2} + 1$ кратно p.
- **22.** Пусть p простое число, $p \neq 2$. Докажите, что число $7^p 5^p 2$ кратно 6p.
- **23.** Если p простое число, то сумма $1^{p-1} + 2^{p-1} + ... + (p-1)^{p-1}$ при делении на p дает остаток p-1. Докажите это.
- **24.** Шестизначное число кратно 7. Его первую цифру стерли и затем записали ее позади последней цифры числа. Докажите, что полученное число тоже кратно 7. (Например, из кратных 7 чисел 632387 и 200004 таким образом получаем числа 323876 и 42, которые тоже кратны 7.)
- **25.** Пусть p простое число, отличное от 2, 3 и 5. Докажите, что число, записанное p 1 единицей, кратно p. (Например, 111111 кратно 7.)
- **26*.** Докажите, что для любого простого p число 11...1122...22...99...99, состоящее из 9p цифр (сначала p единиц, потом p двоек, p троек, ..., наконец, p девяток), при делении на p дает такой же остаток, как и число 123456789.

Таблицы умножения

Назло ей я все-таки помножил землекопов. Правда, ничего хорошего про них не узнал, но зато теперь можно было переходить к другому вопросу. Л.Гераскина

Рассмотрим все n-1 разных ненулевых остатков от деления на n. Составим таблицу умножения, написав на пересечении a-го столбца и b-й строки остаток от деления на n произведения ab. Например, при n=5 получим таблицу 2, при n=11 — таблицу 3.

Таблица 2 X

Таблица 3 \times

		Таблі	ица 4
×	1	2	3
1	1	2	3
2	2	0	2
3	3	2	1

									Таблица 5				
×	1	2	3	4	5	6	7	8	9	10	11		
1	1	2	3	4	5	6	7	8	9	10	11		
2	2	4	6	8	10	0	2	4	6	8	10		
3	3	6	9	0	3	6	9	0	3	6	9		
4	4	8	0	4	8	0	4	8	0	4	8		
5	5	10	3	8	1	6	11	4	9	2	7		
6	6	0	6	0	6	0	6	0	6	0	6		
7	7	2	9	4	11	6	1	8	3	10	5		
8	8	4	0	8	4	0	8	4	0	8	4		
9	9	6	3	0	9	6	3	0	9	6	3		
10	10	8	6	4	2	0	10	8	6	4	2		
11	11	10	9	8	7	6	5	4	3	2	1		

Поскольку в обоих примерах число n простое, в каждой строке, как и в каждом столбце, возникает некоторая перестановка чисел 1, 2, ..., n-1. Если же рассмотреть составное число, то в таблице обязательно встретится нуль. Например, при n=4 имеем $2 \cdot 2 \equiv 0$ (табл.4); не лучше ситуация и при n=12 (табл.5): опять в некоторых строках есть нули! И вообще, при любом составном числе n=ab, где 1 < a, b < n, на пересечении a-й строки и b-го столбца стоит остаток от деления ab на n, т.е. 0.

Итак, если n составное, то имеются ∂ елители nуля — ненулевые остатки a и b, произведение ab которых кратно n, иными словами, равно нулю по модулю n. Но даже при составном n в некоторых строках таблицы умножения нет нулей. В таблице 4 таковы первая и третья строки, а в