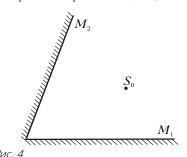


Рис. 2

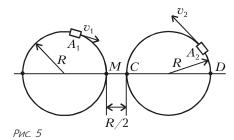
При этом брусок начинает скользить по наклонной поверхности клина. Силы трения отсутствуют. 1) Найдите ускорение клина в этом случае. 2) Полагая α заданным, найдите, при каком отношении масс клина и бруска такое скольжение возможно.


А.Пушнов

3. На рисунке 3 изображена цепочка, состоящая из шести одинаковых звеньев. Все резисторы в цепочке одинаковы и имеют сопротивление r. В первое и

последнее звенья цепочки включены амперметры А и А₀. На входные клеммы х и у цепочки подано некоторое постоянное напряжение U_{xy} , при этом амперметр A показывает ток I = 8,9 A. 1) Какой ток I_0 показывает амперметр A_0 ? 2) Определите напряжение U_{xy} , поданное на входные клеммы цепочки, при условии r = 1 Ом. 3) Определите для этого случая электрическое сопротивление R_{xy} между клеммами x и y. С.Козел

4. В архиве Снеллиуса нашли чертеж, на котором были изображены два плоских зеркала $M_{_1}$ и $M_{_2}$, образующих двугранный угол величиной в 70°, и точечный источник света S_0 (рис.4). От времени чернила выцвели, и невоз-



можно было разглядеть, сколько изображений источника давала такая система зеркал. Попробуйте восстановить все изображения источника S_0 . Сколь-

ко изображений источника S_0 можно было увидеть в такой системе зеркал? В.Слободянин

10 класс

1. По двум кольцевым дорогам радиуса R, лежащим в одной плоскости, движутся автомобили A_1 и A_2 со скоростями $v_1 = v = 20$ км/ч й $v_2 = 2v$ (рис.5). В некоторый момент автомобили находились в точках M и C на

расстоянии R/2 друг от друга. Размеры автомобилей малы по сравнению с R. 1) Найдите скорость автомобиля A_5 в системе отсчета, связанной с автомобилем A_1 в этот момент. 2) Найдите скорость автомобиля A_2 в системе отсчета, связанной с автомобилем $A_{_{\! 1}}$, когда A_2 окажется в точке D.

В. Чивилёв

2. В герметично закрытом сосуде находится влажный воздух, температура которого t_1 = 75 °C, а относительная влажность ϕ_1 = 25% Воздух в сосуде начинают охлаждать. При какой температуре $t_{\scriptscriptstyle 2}$ внутренние стенки сосуда запотеют? График зависимости давления насыщенного водяного пара от температуры приведен на рисунке 6.

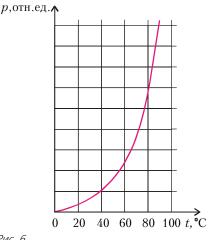


Рис. 6

Давление насыщенного пара дано в относительных единицах.

 $A.\Pi$ ушнов

3. На миллиметровой бумаге изображена p-V-диаграмма некоторого процесса 1-2, проведенного над идеаль-

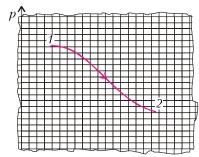


Рис. 7

ным одноатомным газом (рис.7). Известно, что в этом процессе количества теплоты, отданное и поглощенное газом, одинаковы. К сожалению, ось Vдиаграммы утеряна. Постройте по данным задачи эту ось.

С.Жак

4. На рисунке 8 представлена электрическая схема, состоящая из батареи с ЭДС ${\tt E}$, конденсаторов емкостями $C_{{\tt 1}}$ и C_2 , резисторов сопротивлениями R_1 и $\tilde{R_{2}}$, ключа K и идеального вольтметра. После замыкания ключа оказалось, что

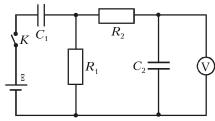
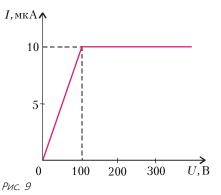



Рис. 8

максимальное напряжение на конденсаторе C_2 , измеренное вольтметром, равно ${\rm E}/2$. 1) Определите разность потенциалов на конденсаторе C_1 в этот момент. 2) Найдите ток через резистор R_1 в этот же момент. 3) Определите максимальный заряд конденсатора C_1 . 4) Вычислите полное количество теплоты, выделившееся в цепи после замыкания ключа.

Ю. Чешев

5. В случае несамостоятельного газового разряда идеализированная зависимость тока I через газоразрядную

