Упражнение 2. При помощи калькулятора убедитесь, что следующая таблица заполнена правильно:

натуральных чисел m и n должны быть выполнены неравенства

$$\alpha m < k < k + 1 < \alpha (m + 1),$$

 $\beta n < k < k + 1 < \beta (n + 1),$

которые мы преобразуем к виду

$$\frac{m}{k} < \frac{1}{\alpha} < \frac{m+1}{k+1}, \ \frac{n}{k} < \frac{1}{\beta} < \frac{n+1}{k+1}.$$

Доказательство

Как же доказать замечательные формулы (1)? И неужели я первый догадался рассмотреть выражения $[\alpha\beta]$ и $[\beta n]$? Нет, в 1877 году в «Теории звука» лорд Рэлей писал: «Если x есть некоторое положительное иррациональное число, меньшее единицы, то можно взять два ряда величин n/x и n/(1-x), где n=1,2,3,...; каждое число, принадлежащее к тому или иному ряду, и только оно одно, будет заключено между двумя последовательными натуральными числами». Другими словами, последовательности $a_n = [n/x]$ и $b_n = [n/(1-x)]$ заполняют без пропусков и перекрытий весь натуральный ряд, если 0 < x < 1 и $x \notin \mathbf{Q}$.

Интересующие нас явные формулы получаются из формул Рэлея при $x=2/\left(1+\sqrt{5}\right)$, поскольку при этом величина 1-x равна как раз $2/\left(3+\sqrt{5}\right)$ (проверьте!).

В общем случае, обозначив $\alpha = 1/x$ и $\beta = 1/(1-x)$, можно переформулировать утверждение Рэлея следующим образом $\alpha = 1/x$ и $\beta = 1/(1-x)$,

Теорема 1. Если α и β – положительные иррациональные числа, связанные соотношением $\frac{1}{\alpha} + \frac{1}{\beta} = 1$, то среди чисел вида $[\alpha n]$ и $[\beta n]$, где $n \in \mathbb{N}$, каждое натуральное число встречается ровно один раз.

Доказательство. Поскольку $\alpha > 1$, в последовательности [α], [2α], [3α], ... никакое число не повторяется. Аналогично, вследствие неравенства $\beta > 1$, строго возрастает и последовательность [β], [2β], [3β], ...

Дальше доказательство ведем методом «от противного». Предположим сначала, что некоторое натуральное число k вошло в обе последовательности, т. е. $k = \lfloor \alpha m \rfloor = \lfloor \beta n \rfloor$, где m, n — натуральные числа. Тогда должны быть выполнены неравенства

$$k < \alpha m < k+1$$
, $k < \beta n < k+1$,

т.е.

$$\frac{m}{k+1} < \frac{1}{\alpha} < \frac{m}{k}, \quad \frac{n}{k+1} < \frac{1}{\beta} < \frac{n}{k}.$$

Сложим эти неравенства, не забыв использовать условие $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. Получим

$$\frac{m+n}{k+1} < 1 < \frac{m+n}{k},$$

откуда

$$k < m + n < k + 1$$
.

Но такого для натуральных чисел не бывает! Значит, число k не могло войти в обе рассматриваемые последовательности.

Теперь предположим, что натуральное число k не вошло ни в одну из последовательностей. Тогда для некоторых

Складывая, получаем

$$\frac{m+n}{k}<1<\frac{m+n+2}{k+1}\,,$$

откуда m+n < k и k+1 < m+n+2, что невозможно для натуральных чисел. Получили желанное противоречие. Теорема доказана.

Хотя мне нравится это доказательство, есть и более короткий способ. 2 Левее любого натурального числа N лежат $[N/\alpha]$ членов первой последовательности и $[N/\beta]$ членов второй. Поскольку α иррационально, числа N/α и N/β имеют ненулевые дробные части. Далее, сумма

$$\frac{N}{\alpha} + \frac{N}{\beta} = N$$

является целым числом, так что дробные части слагаемых дополняют друг друга, т.е. в сумме дают в точности 1. Значит, сумма целых частей [N/α] + [N/β] равна N-1, т.е. левее числа N лежит в точности N-1 членов этих последовательностей. Как легко понять, просматривая натуральный ряд слева направо (любитель строгости сказал бы: применяя индукцию), это как раз означает, что рассматриваемые последовательности однократно покрывают натуральный ряд.

Упражнения

- **3.** Докажите, что последовательности, заданные формулами $a_n = \left[n\sqrt{2} \right]$ и $b_n = a_n + 2n$, заполняют весь натуральный ряд без пропусков и перекрытий.
- **4.** Найдите явные формулы для возрастающих последовательностей a_n и b_n , заполняющих натуральный ряд без пропусков и перекрытий и удовлетворяющих соотношению $b_n=a_n+3n$ при всех $n=1,\ 2,\ 3,\ \dots$
- **5.** Докажите утверждение, обратное теореме 1: если α , β положительные числа и если последовательности $a_n = [\alpha n]$ и $b_n = [\beta n]$ покрывают натуральный ряд без пропусков и перекрытий, то $\frac{1}{\alpha} + \frac{1}{\beta} = 1$, причем числа α и β иррациональны.
- **6.** Выведите из трех предыдущих упражнений, что числа $\sqrt{2}$ и $\sqrt{13}$ иррациональны.³
- 7. Пусть a положительное иррациональное число, b = 1/a. Докажите, что между любыми двумя последовательными натуральными числами содержится одно и только одно из чисел 1+a, 2(1+a), 3(1+a), ... и (1+b), 2(1+b), 3(1+b), ...

Замечание. Последнее упражнение имеет номер 38 в книге «Избранные задачи из журнала «American Mathematical Monthly» (М., Мир, 1977). Следующее упражнение — задача 294 из той же книги.

8. Для натурального числа a > 4 рассмотрим две последовательности f(n) и g(n) натуральных чисел, заданные условиями f(1) =

 $^{^{1}}$ C этого момента, заметьте, числа α и β не обязательно суть $(1+\sqrt{5})/2$ и $(3+\sqrt{5})/2$.

² Мне кажется, его чуть сложнее понять или придумать. Впрочем, не будем спорить о вкусах.

³ Только не подумайте, пожалуйста, что я хочу заменить этим способом привычное доказательство из школьного учебника. Нет, это всего лишь шутка. Шутка!