«Пентиум» хорошо, а ум лучше

A.5AA5A5OB

Напрасно умный очи пучит на жизнь дурацкую мою, ведь то, что умный только учит, я много лет преподаю.

И.Губерман

В СТАТЬЕ «УМ ХОРОШО, А ПЯТЬ – ЛУЧШЕ» («КВАНТ» №6 за 1998 год) И. Ф. Акулич рассказал о трех задачах, в исследовании которых помог компьютер, причем именно компьютер с процессором «Пентиум» (заграничный, быстродействующий, самый-самый хороший). При этом он сформулировал настолько интересные гипотезы, что могло показаться: пора математикам отбросить ручки и начать экспериментировать с «Пентиумом» в поиске новых истин; сотни мегагерц позволяют любому программисту встать во главе целого ученого совета, вычислительная мощь которого колоссально превышает возможности любого ученого сообщества докомпьютерной эры.

Но это только на первый взгляд. А на деле статья Акулича – яркое доказательство древней мощи математики: теоретическое рассмотрение позволяет получить во всех трех задачах точные ответы! У великого английского физика лорда Рэлея (1842–1919) не было «Пентиума», а решение первой задачи он знал!! У Леонарда Эйлера (1707–1783) не было калькулятора, а изученная им гамма-функция позволяет дать точный ответ не только во второй задаче, но и в гораздо более общих ситуациях!!!

Но хватит восклицаний. Перейдем к точным формулировкам и весьма поучительным доказательствам.

Две последовательности

В первой задаче речь идет о разбиении натурального ряда на две возрастающие непересекающиеся последовательности $a_1 < a_2 < a_3 < \dots$ и $b_1 < b_2 < b_3 < \dots$, которые при любом натуральном n удовлетворяют условию $b_n = a_n + n$. Двигаясь по натуральному ряду, можно последовательно вычислять члены обеих последовательностей.

Этот процесс очень хорошо описан в статье Акулича. А именно, поскольку $a_n < b_n$, наименьшее натуральное число, т. е. 1, должно равняться a_1 , откуда немедленно $b_1 = 1+1=2$. Теперь ясно, что наименьшее свободное число, т. е. 3, — это a_2 , откуда $b_2 = 3+2=5$. После этого наименьшим неиспользованным числом оказывается $a_3 = 4$, откуда $b_3 = 4+3=7$. Так можно действовать бесконечно, каждый раз выбирая наименьшее неиспользованное натуральное число и именно его полагая равным a_n , а затем вычисляя $b_n = a_n + n$. (Советую выписать через запятую первые 50 натуральных чисел и применить этот алгоритм — сразу увидите, насколько все просто!)

Не получится ли так, что очередное вычисленное значение a_n или b_n окажется уже занято каким-то ранее определенным a_m или b_m , где m < n? Нет, не получится: a_n , как сказано выше, есть наименьшее натуральное число, отличное от $a_1 < a_2 < \ldots < a_{n-1}$ и от $b_1 < b_2 < \ldots < b_{n-1}$, и потому a_n не может совпадать ни с одним из них; число $b_n = a_n + n > a_{n-1} + n - 1 = b_{n-1}$ тоже не может ни с чем совпасть.

Упражнение 1. Найдите a_{31} .

Гипотеза Акулича и явные формулы

Проделав при помощи «Пентиума» вычисления для первых нескольких миллионов натуральных чисел, Акулич пришел к красивой и смелой гипотезе: *отношение количества а-чисел к количеству b-чисел стремится к «золотому сечению»* $(1+\sqrt{5})/2$.

Эта гипотеза верна. Более того,

$$a_n = \left[\left(1 + \sqrt{5} \right) n/2 \right],$$

$$b_n = a_n + n = \left[\left(1 + \sqrt{5} \right) n/2 \right] + n = \left[\left(3 + \sqrt{5} \right) n/2 \right],$$
(1)

где квадратные скобки обозначают целую часть, т. е. [x] – это наибольшее целое число, не превосходящее числа x.

Прежде чем доказывать эти явные формулы, давайте выведем из них гипотезу Акулича. Обозначим для краткости $\alpha=\left(1+\sqrt{5}\right)\!/2$ и $\beta=\left(3+\sqrt{5}\right)\!/2$. Рассмотрим произвольное натуральное число N и выясним, сколько a-чисел и сколько b-чисел среди первых N натуральных чисел, если последовательности заданы формулами $a_n=\left[\alpha n\right]$ и $b_n=\left[\beta n\right]$.

Неравенство $a_n \le N$ равносильно, по определению целой части, неравенству $\alpha n < N+1$, т. е. неравенству n < N+1

 $<(N+1)/\alpha$. Значит, *а*-чисел среди первых *N* натуральных чисел имеется ровно $[(N+1)/\alpha]$. Аналогично, *b*-чисел $[(N+1)/\beta]$

Итак, отношение количества a-чисел к количеству b-чисел есть $[(N+1)/\alpha]/[(N+1)/\beta]$. Устремим N к бесконечности: отбрасывая знак целой части, в пределе получаем отношение

$$\frac{\beta}{\alpha} = \frac{3 + \sqrt{5}}{1 + \sqrt{5}} = \frac{1 + \sqrt{5}}{2}$$
.

Гипотеза доказана; точнее, она выведена из формул (1).