
зверек за 6 «ночных» часов повзрослеет на 1 год. А для повзросления на 4 года в дневные часы ему понадобится 4 · 3 = = 12 часов. Общее время равно 6 + 12 = 18 часов, что тоже меньше 20 часов у второго зверька.

Итак, первый зверек достигнет пятилетия раньше, чем второй, в обоих случаях.

10. 16 вопросов.

Коля может спросить, например, о числах в каждом из 16 квадратов размером 5×5, центры которых отмечены на рисунке 3,а. Легко убедиться, что любые две клетки таблицы будут входить в разные наборы обведенных Колей квадра-

Для доказательства того, что меньше чем за 16 вопросов восстановить таблицу нельзя, рассмотрим рисунок 3,6, где отмечены 32 граничных узла таблицы. Каждый такой узел дол-

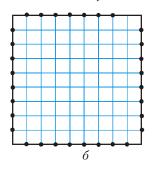


Рис. 3

жен служить вершиной хотя бы одного из обведенных Колей квадратов (иначе две клетки, общей вершиной которых этот узел является, будут входить в один набор обведенных квадратов). Но любой обведенный квадрат (если это не сам квадрат 9×9 , спрашивать про который нет смысла) может иметь своими вершинами не более двух из этих 32 узлов. Поэтому потребуется задать не менее чем 32 : 2 = 16 вопросов.

Законы Паскаля и Архимеда

1. $m = 4\pi r^2 \rho RT/(Mq) \approx 10^{18}$ кг, где M = 32 г/моль – молярная масса кислорода; $h = RT/(Mg) \approx 7.7$ км.

2. x = 0.25 M.

3. $\Delta T/T = 8\sigma/(dp_0) = 0.01 = 1\%$.

4. $M = \rho d^3 \left(1 - \frac{\pi}{4} \right) \left(1 - \frac{m}{\rho d^3} \right) = 160 \text{ r};$

 $\rho_{-} = \rho - m/d^{3} = 0.75 \text{ r/cm}^{3}$.

Московский государственный институт электроннойтехники

МАТЕМАТИКА

Вариант 1

1. 16. **2.** $\log_{0,2} 10$, $\log_{25} 2$, $\log_5 4$. **3.** 1.

4. $(-1)^k \frac{\pi}{36} + \frac{\pi k}{6}, k \in \mathbb{Z}.$ **5.** $(-\infty; 0).$ **6.** (-1; 2).

7. 1,8 г/см³, 2,4 г/см³. 8. $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{2}$ или $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$. 9. $160\sqrt{3}$ см². 10. $2\sqrt{8-\sqrt{3}}$. 11. a=-1.

Вариант 2

1. 0.96. **2.** $(9; +\infty)$. **3.** 0. **4.** 6 km. **5.** 2.

6. $[2^{-4/5}; 1] \cup (1; 2]$. **7.** a/4.

8. $-\frac{\pi}{4} + (-1)^k \cdot \arcsin \frac{7}{5\sqrt{2}} + \pi n, \ n \in \mathbb{Z}.$ **9.** (0; 1).

10. $f(f(x)) = \begin{cases} 1 - 2x, & \text{если } -1 < x \le 1; \\ 4x - 5, & \text{если } 1 < x \le 2; \end{cases}$

11. \emptyset , если a < 0; $(0; +\infty)$, если a = 0; $[-a/3; 0) \cup (8a; +\infty)$, если a > 0.

ФИЗИКА

Вариант 1

1. $t = 2v_2L/(v_2^2 - v_1^2) = 80$ c.

2. $A_{\min} = SH^2g(\rho_1 - \rho_2)^2/(2\rho_1) = 16$ Дж. **3.** $\varphi = \frac{p_2}{p_1} \frac{(273 + t_1)}{(273 + t_2)} 100\% \approx 30\%$.

4. Напряженность направлена из центра в сторону заряда +2q и равна $E = 6kq/a^2 = 600$ B/м.

5. $t = \pi m/(eB) \approx 0.02$ MKC.

6. $v_{\text{max}} = \sqrt{\frac{2}{m} \left(\frac{hc}{\lambda} - A_{\text{BMX}} \right)} \approx 8 \cdot 10^5 \text{ m/c}.$

1. $v_{\rm cp} = (v_{\rm cp1} + v_{\rm cp2})/2 = 12 \text{ M/c}$.

2. $A_{mn} = mg(5D/2 - 3h)/2 = 1.5 \cdot 10^{-3}$ Дж.

3. $\Delta p_2 = \Delta p_1 \left(v_3^2 - v_2^2 \right) / \left(v_2^2 - v_1^2 \right) \approx 6.10^4 \text{ Ha}.$

4. $F = q\sqrt{2W/C}/d = 10^{-5}$ H.

5. n = (4-k)/(2-k) = 5. **6.** $D_2 = D_1 F_2 / F_1 = 4$ MM.

Московский государственный технический университет им. Н.Э.Баумана

МАТЕМАТИКА

Вариант 1

1. 40 км. 2. $\frac{5\pi}{8}$; $\frac{5\pi}{6}$; $\frac{7\pi}{8}$. 3. 1/2. 4. (-∞; −1). 5. 54. Указание. Площадь треугольника из условия равна

 $S(x) = \frac{1}{2}(5-x)^2 \cdot x^3$. Исследуйте эту функцию на максимум с помощью производной.

6. $p \in \left[-\frac{1}{2}; 0\right] \cup \left\{\frac{1}{2}\right\}$. Указание. Исходная система имеет единственное решение тогда и только тогда, когда уравнение $py^{2} - 2y + 2p + 1 = 0$ имеет ровно один неотрицательный ко-

7. $h^2/6\sqrt{6}$. Указание. Поскольку $TC \perp BC$, то $BC \perp AC$. Пусть M – точка на ребре BT. Площадь треугольника AMDбудет наименьшей, если его высота MN – общий перпендикуляр к двум скрещивающимся прямым AD и BD.

Вариант 2

1. 30 тыс. рублей, 120 тыс. рублей.

2. $\left((-1)^k \frac{\pi}{4} + k\pi\right)^2$, $k \in \mathbb{Z}$, $k \ge 0$. 3. 1. 4. $\left[-4; -3\right) \cup (0; 1]$. 5. $4\left(\pi + \sqrt{3}\right)/3$. 6. $x_1 = -2 - \sqrt{a}$, $x_2 = -2 + \sqrt{1-a}$ при $a \in (-\infty; -4]$; $x_{1,2} = -2 \pm \sqrt{-a}$ при $a \in \left[-3; 0\right)$. 7. $24\pi l^2$.