Оптические системы и приборы

Ю.ЧЕШЕВ

ПТИЧЕСКИЕ системы представляют собой совокупность различных оптических инструментов - линз, диэлектрических пластин, зеркал и т.п. Роль их огромна при изучении физических явлений. Это - исследования микромира с помощью микроскопа, изучение звезд и галактик при использовании телескопов и зрительных труб, наблюдение далеко расположенных объектов с применением бинокля, фотографирование объектов фотоаппаратом, исследование диэлектрических свойств различных сред. Одно из основных требований, предъявляемых к таким приборам, - это требование преобразования лучей, исходящих от предмета, в лучи, сходящиеся в одну точку наблюдения (действительное изображение), или в лучи, продолжение которых исходит из одной, отличной от исходной, точки пространства (мнимое изображение). Следовательно, решение задач, в которых обсуждаются различные оптические инструменты, основано на умении построения хода лучей от предметов до их изображений.

Задача 1. Рассеивающая линза \mathcal{I}_1 и собирающая линза \mathcal{I}_2 расположены на одной главной оптической оси (рис.1). Такая оптическая система создает

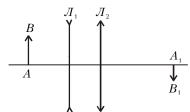


Рис. 1

действительное изображение A_1B_1 предмета AB. С помощью построения найдите положение главных фокусов обеих линз.

Из точки B через центр линзы \mathcal{J}_1 проведем луч до пересечения с линзой \mathcal{J}_2 в точке C (рис.2). После преломления линзой \overline{J}_2 этот луч пойдет по траектории CB_1 . Из точки B_1 через центр линзы $\dot{\mathcal{J}_2}$ проведем луч B_1D до пересечения с линзой \mathcal{J}_1 . После преломления линзой \mathcal{J}_1 он пойдет по направлению DB. Через центр линзы \mathcal{J}_2 проведем прямую 1-1, параллельную CB. Тогда точка Φ_2 пересечения отрезка CB_1 с прямой 1-1 лежит в фокальной плоскости линзы \mathcal{J}_2 . Пересечение этой фокальной плоскости с главной оптической осью системы определяет положение правого фокуса F_2 линзы \mathcal{J}_2 . Найдем теперь левый фокус линзы \mathcal{J}_1 . Для этого проведем прямую 2-2, параллельную лучу BD до пересечения с продолжением луча DB_1 в точке Φ_1 , которая определит положение фокальной плоскости линзы \mathcal{J}_1 . Пересечение этой плоскости с главной оптической осью системы задает положение левого фокуса F_1 линзы \mathcal{J}_1 . Аналогичным образом строятся правый фокус линзы \mathcal{J}_1 и левый фокус линзы \mathcal{J}_2 .

Задача 2. Газетный текст фотографируется фотоаппаратом с объективом, имеющим фокусное расстояние F = 50 см, дважды: а) с наименьшего допустимого для этого объектива расстояния d = 0,5 м; 6) присоединив объектив к камере через удлинительное кольцо высотой h = 25 мм (также с минимально возможного в этом случае расстояния). Найдите отношение размеров изображений, полученных на фотопленке в этих случаях.

Пусть f — расстояние от объектива до фотопленки. Формула линзы в этом случае дает

случае дает 1 1

откуда для f получим

$$f = \frac{dF}{d - F}.$$

Увеличение в этом случае равно

$$\Gamma_1 = \frac{f}{d} = \frac{F}{d - F} \,.$$

Во втором варианте расстояние от объектива до пленки равно $f_1 = f + h$, и увеличение составляет

$$\Gamma_2 = \frac{F}{d_1 - F} \,,$$

где d_1 — наименьшее расстояние от объектива до фотографируемого предмета, которое опять-таки можно выразить с помощью формулы линзы. Отношение размеров изображений равно отношению увеличений, т.е.

$$\beta = \frac{\Gamma_2}{\Gamma_1} = \frac{(d-F)h}{F^2} + 1 = 5.5$$
.

Задача 3. Наблюдатель с нормальным зрением рассматривает Луну в телескоп, объектив которого имеет фокусное расстояние $F_1=2$ м, а окуляр $F_2=5$ см. Глаз наблюдателя аккомодирован на расстояние наилучшего зрения $d_0=25$ см. На сколько нужно переместить окуляр для того, чтобы получить изображение Луны на экране на расстоянии $d_0=25$ см от окуляра? Чему равен при этом размер изображения Луны на экране, если ее угловой диаметр $\alpha=30'$?

Изображение Луны, даваемое объективом \mathcal{I}_1 (рис.3), расположено в его фокальной плоскости на расстоянии F_1 от линзы. Это изображение, находящееся на расстоянии d_1 от окуляра \mathcal{I}_2 , наблюдается глазом на расстоянии d_0 от линзы \mathcal{I}_2 с фокусным расстоянием F_2 . Из формулы линзы

$$\frac{1}{d_1} - \frac{1}{d_0} = \frac{1}{F_2}$$

находим

$$d_1 = \frac{d_0 F_2}{d_0 + F_2} = 4,17 \text{ cm}.$$

В том случае, когда изображение Луны

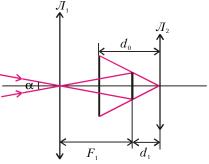


Рис. 3