Ортоцентрический треугольник

Α.ΕΓΟΡΟΒ

В этой статье мы поговорим о высотах треугольников.

Напомним прежде всего, что во всяком треугольнике высоты (точнее — прямые, на которых они лежат) пересекаются в одной точке, называемой ортоцентром.

Вот изящное доказательство этого факта. Возьмем произвольный треугольник ABC. Пусть AA_1 , BB_1 , CC_1 —его высоты. Через вершины A, B и C проведем прямые, параллельные противоположным сторонам (рис.1). В

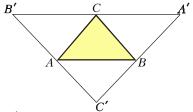
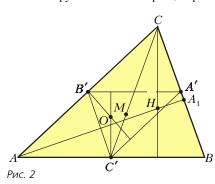


Рис. 1

результате получится треугольник A'B'C', стороны которого параллельны AB, BC и AC соответственно. Прямые, перпендикулярные A'B' в точке C, B'C' в точке A и A'C'в точке B, т.е. серединные перпендикуляры к сторонам треугольника A'B'C', пересекаются в точке H — центре описанной около A'B'C' окружности. Но каждая из высот треугольника ABC лежит на одной из этих прямых.

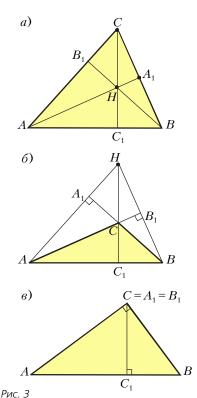
Упражнение 1 (теорема Эйлера). Докажите, что во всяком треугольнике точка пересечения медиан M, центр описанной окружности O и ортоцентр H



лежат на одной прямой, и найдите, в каком отношении точка M делит отрезок OH. Указание. Пусть A', B', C' — середины сторон треугольника ABC (рис.2), H — его ортоцентр, O — центр описанной окружности, а M — центр тяжести. Заметим, что точка O — ортоцентр треугольника A'B'C', а при гомотетии с коэффициентом —2 и центром в точке M точки A', B', C' переходят в точки A, B и C соответственно, а точка O — в H.

При этом ортоцентр H лежит внутри треугольника ABC, если он остроугольный, и вне него, если ABC — тупоугольный треугольник (рис. 3, a, δ). Для прямоугольного треугольника ортоцентр совпадает с вершиной прямого угла (рис. 3, δ).

Попутно отметим, что для тупоу-гольного треугольника ABC треугольник AHB (см. рис. 3,6) — остроуголь-



ный с высотами AB_1 , BA_1 , HC_1 и ортоцентром C . Это замечание будет нам полезно в дальнейшем. Стоит также обратить внимание на то, что каждая из четырех точек A, B, C и H является ортоцентром треугольника, образованного остальными тремя точками.

Вспомогательная окружность

В дальнейшем будут использованы стандартные обозначения для сторон и углов треугольника: BC = a, AC = b, AB = c, $\angle A = \alpha$, $\angle B = \beta$, $\angle C = \gamma$. Через R мы будем обозначать радиус описанной окружности, а через O — ее центр.

Начнем с задачи.

Задача. Докажите, что треугольники A_1B_1C и ABC подобны.

Рассмотрим сначала остроугольный треугольник ABC. Поскольку углы AA_1B и BB_1A — прямые, точки A, B_1 , A_1 и B лежат на окружности с диаметром AB (рис.4,a). Поэтому $\angle B_1A_1B = \pi - \alpha$. Но это значит, что $\angle CA_1B_1 = \alpha$, и треугольники A_1B_1C и ABC подобны по третьему признаку подобия. Если же ABC тупоугольный

